Simultaneous reduction of fat and sugar in cake production; effects of changing sucrose, oil, water, inulin, and Rebaudioside A on cake batter properties

2020 ◽  
Vol 44 (10) ◽  
Author(s):  
Mahsa Majzoobi ◽  
Mahshid Mohammadi ◽  
Asgar Farahnaky
Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 254
Author(s):  
Aislinn M. Richardson ◽  
Andrey A. Tyuftin ◽  
Kieran N. Kilcawley ◽  
Eimear Gallagher ◽  
Maurice G. O’Sullivan ◽  
...  

Determining minimum levels of fat and sucrose needed for the sensory acceptance of sponge cake while increasing the nutritional quality was the main objective of this study. Sponge cakes with 0, 25, 50 and 75% sucrose replacement (SR) using a combination of inulin and Rebaudioside A (Reb A) were prepared. Sensory acceptance testing (SAT) was carried out on samples. Following experimental results, four more samples were prepared where fat was replaced sequentially (0, 25, 50 and 75%) in sucrose-replaced sponge cakes using pureed butter beans (Pbb) as a replacer. Fat-replaced samples were investigated using sensory (hedonic and intensity) and physicochemical analysis. Texture liking and overall acceptability (OA) were the only hedonic sensory parameters significantly affected after a 50% SR in sponge cake (p < 0.05). A 25% SR had no significant impact on any hedonic sensory properties and samples were just as accepted as the control sucrose sample. A 30% SR was chosen for further experiments. After a 50% fat replacement (FR), no significant differences were found between 30% sucrose-replaced sponge cake samples in relation to all sensory (hedonic and intensity) parameters investigated. Flavour and aroma intensity attributes such as buttery and sweet and, subsequently, liking and OA of samples were negatively affected after a 75% FR (p < 0.05). Instrumental texture properties (hardness and chewiness (N)) did not discriminate between samples with increasing levels of FR using Pbb. Moisture content increased significantly with FR (p < 0.05). A simultaneous reduction in fat (42%) and sucrose was achieved (28%) in sponge cake samples without negatively affecting OA. Optimised samples contained significantly more dietary fibre (p < 0.05).


2001 ◽  
Author(s):  
Catherine Gautier
Keyword(s):  

2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document