Phase volume-fraction measurement in oil-water-gas flow using fast neutrons

1996 ◽  
Vol 22 ◽  
pp. 137
Author(s):  
E Hussein
SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 148-154 ◽  
Author(s):  
Jany Carolina Vielma ◽  
Ovadia Shoham ◽  
Ram S. Mohan ◽  
Luis E. Gomez

Summary A novel model has been developed for the prediction of frictional pressure gradient in unstable turbulent oil/water dispersion flow in horizontal pipes. This model uses the friction-factor approach, based on the law of the wall, to predict the pressure gradient. Modification of both the von Karman coefficient κ' and the parameter B' have been carried out in the law of the wall to include the effect of the dispersed phase—namely, the dispersed-phase volume fraction and the characteristic-droplet-size diameters. The developed model applies to both dilute and dense flows, covering the entire range of water cuts. Model predictions have been compared with a comprehensive experimental database collected from literature, resulting in an absolute average error of 9.6%. Also, the comparisons demonstrate that the developed model properly represents the physical phenomena exhibited in unstable turbulent oil/water dispersions. These include drag reduction, increase in frictional pressure gradient with increasing dispersed-phase volume fraction, and the peak in the frictional pressure gradient at the oil/water phase-inversion region.


1997 ◽  
Vol 132-136 ◽  
pp. 2111-2114
Author(s):  
E.G. Bennett ◽  
L.J.M.G. Dortmans ◽  
M. Hendrix ◽  
Roger Morrell ◽  
G. de With

2021 ◽  
Vol 78 ◽  
pp. 101881
Author(s):  
Pengbo Yin ◽  
Xuewen Cao ◽  
Pan Zhang ◽  
Jiang Bian ◽  
Xiang Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Wook Kim ◽  
Seong-Hoon Kang ◽  
Se-Jong Kim ◽  
Seungchul Lee

AbstractAdvanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its requirement of a sufficient amount of training data with correct labels to the network. This often comes as a challenge in many areas where obtaining data and labeling it is extremely labor-intensive. To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to learn the underlying probability distribution of each phase and generate realistic sample points with class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. This presents the high feasibility of using the proposed methodology for fast and precise estimation of phase volume fraction in both industry and academia.


2014 ◽  
Vol 224 ◽  
pp. 3-8 ◽  
Author(s):  
Sebastian Kamiński ◽  
Marcel Szymaniec ◽  
Tadeusz Łagoda

In this work an investigation of internal structure influence on mechanical and fatigue properties of ferritic-pearlitic steels is shown. Ferrite grain size and phase volume fraction of three grades of structural steel with similar chemical composition, but different mechanical properties, were examined. Afterwards, samples of the materials were subjected to cyclic bending tests. The results and conclusions are presented in this paper


2005 ◽  
Vol 295-296 ◽  
pp. 417-422
Author(s):  
X. Li ◽  
Z.L. Ding ◽  
F. Yuan

The correlation method had once been considered as one of the best methods for the measurement of multiphase flow. However, if the behavior of flow does not fit the ergodic random process, the measured cross correlation plot will have a gross distortion when the different components of flow do not pervade within one another to the full extent. We measured a variety of parameters of three phase oil/water/gas flow in an oil pipeline. The change of flow pattern is so complex that the measured signals are always contaminated by stochastic noises. The weak signals are very easily covered by the noise so that it will result in great deviation. Wavelet transformation is an analytical method of both time and frequency domain. The method can achieve signal decomposition and location in time and frequency domain through adjustment and translation of scale. An LMS algorithm in wavelet transform is studied for denoising the signals based on the use of a novel smart capacitive sensor to measure three phase oil/water/gas flow in oil pipeline. The results of simulation and data processing by MATLAB reveal that wavelet analysis has better denoising effects for online measurement of crude oils with high measurement precision and a wide application range.


Sign in / Sign up

Export Citation Format

Share Document