phase mobility
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 103 (4) ◽  
pp. 12-20
Author(s):  
Iskander Gussenov ◽  
Nurbatyr Mukhametgazy ◽  
Alexey Shakhvorostov ◽  
Sarkyt Kudaibergenov

High molecular weight amphoteric terpolymer based on a nonionic monomer, acrylamide (AAm), an anionic monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS), and a cationic monomer, (3-acrylamidopropyl) trimethylammonium chloride (APTAC), was prepared using free-radical copolymerization in an aqueous solution and characterized by 1H NMR, FTIR, GPC, DLS, zeta potential and viscometry. The polymer was shown to be viscosifying, and therefore can be utilized as a polymer flooding agent in the high salinity and temperature conditions of oil reservoirs. Injection of 0.25 wt.% of amphoteric terpolymer, dissolved in 200-300 g∙L-1 brine, into high and low permeability sand pack models demonstrated that the oil recovery factor (ORF) increases by up to 23-28% in comparison with saline water flooding. This is explained by an increase in the viscosity of brine solution due to disruption of intra- and interionic contacts between oppositely charged AMPS and APTAC moieties, demonstrating the antipolyelectrolyte effect. In high saline water, the anions and cations of salts screen the electrostatic attraction between positively and negatively charged macroions, resulting in expansion of the macromolecule. This phenomenon leads to an increase in the viscosifying effect on the brine solution, thus decreasing the mobility factor (M), which is defined as the ratio of displacing phase mobility (water) to displaced phase mobility (oil).


2021 ◽  
Author(s):  
Oleg Dinariev ◽  
Nikolay Evseev

Abstract The computational method for gas-condensate phase permeabilities is presented using digital rock analysis. The proposed method combines: a) construction of high-resolution tomographic images of the pore space; b) development of compositional model of a gas-condensate mixture at pore-scale including rheology, fluid-fluid and fluid-rock interfacial tension coefficients, and thermodynamic and kinetic properties of fluid phases; c) 3D pore-scale modeling of multiphase transport and interfacial chemical component exchange using the density functional hydrodynamics numerical simulator. This digital rock analysis workflow is applied to the gas-condensate transport at pore-scale. The numerical simulations are carried out using the 3D digital rock model constructed by X-ray microCT imaging of the rock pore structure. By specifying different gas and condensate fractions and injection rates it has been possible to obtain computationally 3D saturation distribution fields and the phase permeabilities. The results of 3D density functional hydrodynamic simulations provide the comprehensive description of gas-condensate mixture at pore-scale including hydrodynamic desaturation effects and phase transition kinetic phenomena. It is demonstrated that condensate distribution in pores, phase mobility thresholds and phase permeabilities are dependent on wettability properties and flow rates. It is shown that condensate composition in individual pores is also dynamically dependent on flow regimes. These results can be used in field development planning for the improved evaluation of condensate banking in the vicinity of production wells and condensate losses in the reservoir.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fan Liu ◽  
Qingdong Ni ◽  
Chunguang Zhang ◽  
Wensheng Zhou ◽  
Jingqi Lin ◽  
...  

The heavy-oil flow in porous media is characterized by non-Darcy law with variable threshold pressure gradient (TPG) due to the large fluid viscosity. However, available analytical and numerical models hardly consider this effect, which can lead to erroneous results. This paper is aimed at presenting an innovative approach and establishing a numerical simulator to analyze the heavy-oil flow behavior with waterflooding. The apparent viscosity of the oil phase and flow correction coefficient characterized by the TPG were applied to describe the viscosity anomaly of heavy oil. Considering the formation heterogeneity, the TPG was processed into a variable related to mobility and the directionality. The discretization and linearization of the mathematical model were conducted to establish a fully implicit numerical model; the TPG value on each grid node was obtained through oil phase mobility interpolation, and then, the Jacobi matrix was reassembled and calculated to solve pressure and saturation equations. The corresponding simulator was thus developed. The pre-/postprocessing module of the simulator is connected to ECLIPSE; then, an efficient algorithm is introduced to realize a fast solution. Results show that considering the TPG will not only reduce the waterflooding area but also reduce the oil displacement efficiency because of aggravating the nonpiston phenomenon and interlayer conflict. The numerical simulation study on the TPG of heavy oil provides theoretical and technical support for the rational development and adjustment of water-driven heavy oil.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Fan Zhang ◽  
Hanmin Xiao ◽  
Zhenxue Jiang ◽  
Xianglu Tang ◽  
Xuewei Liu ◽  
...  

Abstract Mobility is the main factor restricting the production of tight oil. In order to explore the influence of pore throat structure and fluid seepage on the mobility, six tight sandstone samples are selected by high-pressure mercury intrusion, nuclear magnetic resonance, water driving oil experiments, and oil-water relative permeability experiments to discuss the influence of pore structure and multiphases on the mobility of tight oil. The results indicate that with the increase in effective porosity, more oil and water are exchanged, and the mobility of the oil phase is enhanced. The large pore is positively correlated with the mobility of tight oil while the relationship between the mobility of small pore and effective porosity remains unclear. Particularly, the mobility of the tight oil is determined by the matching relationship between the pore throat radius and the sorting of the tight reservoir. Specifically, the smaller the two-phase copermeation zone, the greater the bound water saturation; the greater the slope of the oil phase permeability curve, the less the space for the two phases to flow together; the more the oil blocked by water in the reservoir, the worse the phase mobility. The mobility of tight oil can be divided into four categories by pore throat radius, pore throat sorting coefficient, and bound water saturation.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Yurii Ivakin ◽  
Andrey Smirnov ◽  
Anastasia Kholodkova ◽  
Alexander Vasin ◽  
Mikhail Kormilicin ◽  
...  

Analysis of scanning electron microscopy images was used to study the changes in the crystal size distribution of ZnO, which occurred during its processing in an aqueous medium at 220–255 °C and an equilibrium vapor pressure in an autoclave. The results were compared with those of ZnO placed in a die for treatment under similar conditions supplemented with mechanical pressure application in the cold sintering process. In both cases, ZnO was treated in the presence of an activating additive: either zinc acetate or ammonium chloride. During autoclaving, a powder consisting of fine ZnO monocrystals was obtained, while the cold sintering process led to ceramics formation. Under vapor pressure and mechanical pressure, the aqueous medium affected ZnO transformation by the same mechanism of solid-phase mobility activation due to the additives’ influence. The higher the content of additives in the medium, and the higher the mechanical pressure, the more pronounced activating effect was observed. Mass transfer during the cold sintering process occurred mainly by the coalescence of crystals, while without mechanical pressure, the predominance of surface spreading was revealed. In the initial ZnO powder, the average crystal size was 0.193 μm. It grew up to 0.316–0.386 μm in a fine-crystalline powder formed in the autoclave and to an average grain size of 0.244–0.799 μm in the ceramics, which relative density reached 0.82–0.96. A scheme explaining the influence of an aqueous medium on the solid-phase mobility of ZnO structure was proposed. It was found that the addition of 7.6 mol% ammonium chloride to the reaction medium causes the processes of compaction and grain growth similar to those observed in ZnO Cold Sintering Process with the addition of 0.925 mol% zinc acetate.


Author(s):  
N.N. Nazarenko ◽  
◽  
A.G. Knyazeva ◽  

On the basis of proposed new filtration model the peculiarities of concentration distribution of component carried by two-component biological liquid and fluid velocity in capillary with two-layer porous walls in steady-state mode are studied. Mathematical model takes into account such important phenomena as concentration expansion and viscosity dependence on concentration. The fluid flow corresponds to the Brinkman model. Dimensionless complexes linking characteristic physical scales of different phenomena are highlighted. Influence of model parameters on biological liquid filtration process for capillary wall layers with different porosity is analyzed. The peculiarities of flow regime and distribution of component concentration for different characteristics of internal porous layer (porosity, phase mobility, size) are revealed.


Author(s):  
Ying Gao ◽  
Apostolos Georgiadis ◽  
Niels Brussee ◽  
Ab Coorn ◽  
Hilbert van der Linde ◽  
...  

When oil fields fall during their lifetime below the bubble point gas comes out of solution. The key questions are at which saturation the gas becomes mobile (“critical gas saturation”) and what the gas mobility is, because mobile gas reduces the production of oil significantly. The traditional view is that the gas phase becomes mobile once gas bubbles grow or expand to a size where they connect and form a percolating path. For typical 3D porous media the saturation corresponding to this percolation limit is on the order of 20%. However, significant literature report on gas mobility below lower limits of percolation thresholds i.e. below 0.1%. A direct experimental insight for that is lacking because laboratory measurements are notoriously difficult since the formation of gas bubbles below the bubble point includes thermodynamic and kinetic aspects, and the pressure decline rates achievable in laboratory experiments are orders of magnitude higher than the decline rates in the field. Here we study the nucleation and transport of gas coming out of solution in-situ in 3D rock using X-ray computed micro tomography which allows direct visualization of the nucleation kinetics and connectivity of gas. We use either propane or a propane–decane mixture as model system and conduct pressure depletion in absence of flow finding that – consistent with the literature – observation of the bubble point in the porous medium is decreased and becomes pressure decline rate dependent because of the bubble nucleation kinetics. That occurs in single-component systems and in hydrocarbon mixtures. Pressure depletion in absence of flow results in critical gas saturations between 20 and 30% which is consistent with typical percolation thresholds in 3D porous structures. That does not explain experimentally observed critical gas saturations significantly below 20%. Also, the respective pore level fluid occupancy where pores are filled with either gas or liquid phase but not partially with both as in normal 2-phase immiscible systems rather diminishes connectivity of gas and liquid phases. This observation indicates that likely other mechanisms play a role in establishing gas mobility at saturations significantly below 20%. Experiments under flow conditions, where gas is injected near the bubble point suggest that diffusion may significantly contribute to the transport of gas and may even be the dominant transport mechanism at field relevant flow rates. The consequence of diffusive transport are compositional gradients where locally the composition is such gas nucleation may occur. That would lead to a disconnected but mobile gas distribution ahead of the convective front. Furthermore, diffusive exchange leads to ripening and anti-ripening effects which influences the distribution for which we see evidence in pressure depletion experiments but not so much at low rate gas injection. Respective relative permeability computed from the imaged fluid distributions using a lattice Boltzmann approach show distinctly different behavior between pressure depletion and flowing conditions. These findings suggest that capillarity in a gas–liquid hydrocarbon mixture is far more complex than in a 2-phase immiscible system. Capillarity is coupled to phase behavior thermodynamics and kinetics on a fast time scale and diffusion-dominated mechanisms such as ripening and anti-ripening effects at a slow time scale. While the consequences for the current experimental and field modelling approaches are not yet fully clear, this shows that more research is needed to fully understand these effects and their implications.


Author(s):  
E. M. Barsky ◽  
M. D. Barsky

The regime of two-phase ascending flow in which the solid phase can move in both directions is called critical. The analysis of such flows from the standpoint of statistical approach has allowed establishing main parameters characterizing this mass process. Chaotizing factor and solid phase mobility are among its energy characteristics. It is shown that two-phase systems that can exchange energy and particles, evolve towards an equilibrium state with maximal entropy. In this case, the ratio of mobility factors in all parts of the system to the chaotizing factor acquires the same value. The analysis of this ratio leads to a universal criterion of separation curves affinization. In this respect, the identity of this criterion for different size classes ensures their equal extractability. A correlation between principal parameters characterizing a two-phase flow as a statistical process is determined. Ill. 4. Ref. 4.


Sign in / Sign up

Export Citation Format

Share Document