Hyaluronic acid-modified cationic niosomes for ocular gene delivery: improving transfection efficiency in retinal pigment epithelium

2018 ◽  
Vol 70 (9) ◽  
pp. 1139-1151 ◽  
Author(s):  
Yanmei Qin ◽  
Yongfeng Tian ◽  
Yang Liu ◽  
Dong Li ◽  
Hua Zhang ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Aiden Eblimit ◽  
Mustafa S. Makia ◽  
Daniel Strayve ◽  
Ryan Crane ◽  
Shannon M. Conley ◽  
...  

Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ana V. Oliveira ◽  
Diogo B. Bitoque ◽  
Gabriela A. Silva

The low gene transfer efficiency of chitosan-DNA polyplexes is a consequence of their high stability and consequent slow DNA release. The incorporation of an anionic polymer is believed to loosen chitosan interactions with DNA and thus promote higher transfection efficiencies. In this work, several formulations of chitosan-DNA polyplexes incorporating hyaluronic acid were prepared and characterized for their gene transfection efficiency on both HEK293 and retinal pigment epithelial cells. The different polyplex formulations showed morphology, size, and charge compatible with a role in gene delivery. The incorporation of hyaluronic acid rendered the formulations less stable, as was the goal, but it did not affect the loading and protection of the DNA. Compared with chitosan alone, the transfection efficiency had a 4-fold improvement, which was attributed to the presence of hyaluronic acid. Overall, our hybrid chitosan-hyaluronic acid polyplexes showed a significant improvement of the efficiency of chitosan-based nonviral vectorsin vitro, suggesting that this strategy can further improve the transfection efficiency of nonviral vectors.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 289 ◽  
Author(s):  
Trigueros ◽  
Domènech ◽  
Toulis ◽  
Marfany

Many rare diseases course with affectation of neurosensory organs. Among them, the neuroepithelial retina is very vulnerable due to constant light/oxidative stress, but it is also the most accessible and amenable to gene manipulation. Currently, gene addition therapies targeting retinal tissue (either photoreceptors or the retinal pigment epithelium), as a therapy for inherited retinal dystrophies, use adeno-associated virus (AAV)-based approaches. However, efficiency and safety of therapeutic strategies are relevant issues that are not always resolved in virus-based gene delivery and alternative methodologies should be explored. Based on our experience, we are currently assessing the novel physical properties at the nanoscale of inorganic gold nanoparticles for delivering genes to the retinal pigment epithelium (RPE) as a safe and efficient alternative approach. In this work, we present our preliminary results using DNA-wrapped gold nanoparticles (DNA-gold NPs) for successful in vitro gene delivery on human retinal pigment epithelium cell cultures, as a proof-of-principle to assess its feasibility for retina in vivo gene delivery. Our results show faster expression of a reporter gene in cells transfected with DNA-gold NPs compared to DNA-liposome complexes. Furthermore, we show that the DNA-gold NPs follow different uptake, internalization and intracellular vesicle trafficking routes compared to pristine NPs.


Author(s):  
G.E. Korte ◽  
M. Marko ◽  
G. Hageman

Sodium iodate iv. damages the retinal pigment epithelium (RPE) in rabbits. Where RPE does not regenerate (e.g., 1,2) Muller glial cells (MC) forma subretinal scar that replaces RPE. The MC response was studied by HVEM in 3D computer reconstructions of serial thick sections, made using the STEREC0N program (3), and the HVEM at the NYS Dept. of Health in Albany, NY. Tissue was processed for HVEM or immunofluorescence localization of a monoclonal antibody recognizing MG microvilli (4).


Sign in / Sign up

Export Citation Format

Share Document