cationic niosomes
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 3)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 696
Author(s):  
Yerai Vado ◽  
Gustavo Puras ◽  
Melania Rosique ◽  
Cesar Martin ◽  
Jose Luis Pedraz ◽  
...  

Background: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues. They can be cultured, have great growth capacity, and can differentiate into several cell types. The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs present additional benefits in the fact that they can be easily obtained noninvasively. Regarding gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in need of improvement. Methods: We isolated hUSCs from urine, and the cell culture was tested and characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and they were physicochemically characterized. Then, they were screened into hUSCs for transfection efficiency, and their internalization was evaluated. Results: GPxT-CQ at a lipid/DNA ratio of 5:1 (w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes entered mainly via caveolae-mediated endocytosis. Conclusions: In conclusion, we established a protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant clinical applications such as in gene therapy. This methodology could also be used for creating cellular models for studying and validating pathogenic genetic variants, and even for performing functional studies. Our study increases knowledge about the internalization of tested cationic niosomes in these previously unexplored cells.


Author(s):  
Mohammad A. Obeid ◽  
Hanin Alyamani ◽  
Haneen Amawi ◽  
Alaa A. A. Aljabali ◽  
Meriem Rezigue ◽  
...  

2019 ◽  
Vol 819 ◽  
pp. 169-174
Author(s):  
Supusson Pengnam ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Nattisa Ni-yomtham ◽  
Boon Ek Yingyongnarongkul ◽  
...  

Niosomes are a lipid nanoparticle which have been widely used as non-viral carrier for therapeutic DNA or siRNA. They are formulated from non-ionic surfactant and other helper lipids. The aim of this study were to formulate niosome containing spermine-based cationic lipid with different linkers and to evaluate the efficiency of siRNA delivery in cervical cancer cell (HeLa cell). The niosomes were formulated from cholesterol (Chol), Span 20 and different cationic lipid (Ay, By, Cy and Dy) at various molar ratios. The properties of niosomes and ability of niosome to complex with siRNA were characterized. The cellular uptake, gene silencing efficiency and cytotoxicity were also determined. From the results, niosomes formulated at Chol:Span20:lipid molar ratio of 2.5:2.5:2 showed positive zeta potential and they were in nanosize (<200 nm). The binding ability of cationic niosomes to siRNA depended on types of cationic lipid. Among niosome/siRNA complexes, the niosome By/siRNA complex provided the highest gene silencing efficiency at weight ratio of 20. The highest cellular uptake also obtained by using niosome By as a carrier. The cytotoxicity revealed that cationic niosomes had low toxicity (cell viability > 80%). In conclusion, the cationic niosomes prepared from Chol, Span 20 and spermine-based cationic lipids are able to complex with siRNA and suitable for siRNA delivery with low toxicity.


2019 ◽  
Vol 819 ◽  
pp. 151-156
Author(s):  
Supusson Pengnam ◽  
Samarwadee Plianwong ◽  
Kanokwan Singpanna ◽  
Nattisa Ni-yomtham ◽  
Widchaya Radchatawedchakoon ◽  
...  

Lipid-based formulations have been used as a widespread carrier to improve gene delivery. Niosomes, one type of lipid-based vesicular systems are produced from non-ionic surfactants which are generally inexpensive and potentially more stable than phospholipids. This article was to develop PEGylated cationic niosomes for DNA delivery. Thin film hydration and sonication method were applied for cationic niosomes. The niosome formulations were composed of Span 20, cholesterol (Chol) and plier-like cationic lipid B (PCL-B) with or without cholesterol-polyethylene glycol 2000 (Chol-PEG). The physicochemical properties of cationic niosomes and nioplexes were evaluated including particle size, zeta potential, DNA condensation and serum protection. The transfection efficiency and cell viability were examined in HeLa cells. The particle size and surface charge of PEGylated cationic niosome containing Span 20: Chol: PCL-B: Chol-PEG at the molar ratio of 2.5: 2.5: 1.5: 0.14 (N-PEG2) were 129.47 ± 2.15 nm and 25.93 ± 4.18 mV, respectively. These PEGylated cationic niosomes could condense pDNA into the nanosize particles and also enhance the serum protection ability for at least 6 h. Moreover, N-PEG2 exhibited high transfection efficiency in comparison with lipofectamine® 2000 and low cytotoxicity. Therefore, the novel PEGylated cationic niosomes have the capability to develop as a promising potential carrier for DNA delivery.


2019 ◽  
Vol 304 ◽  
pp. 181-190 ◽  
Author(s):  
Mohamed Mashal ◽  
Noha Attia ◽  
Gema Martínez-Navarrete ◽  
Cristina Soto-Sánchez ◽  
Eduardo Fernández ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 50 ◽  
Author(s):  
Santiago Grijalvo ◽  
Gustavo Puras ◽  
Jon Zárate ◽  
Myriam Sainz-Ramos ◽  
Nuseibah A. L. Qtaish ◽  
...  

Cationic niosomes have become important non-viral vehicles for transporting a good number of small drug molecules and macromolecules. Growing interest shown by these colloidal nanoparticles in therapy is determined by their structural similarities to liposomes. Cationic niosomes are usually obtained from the self-assembly of non-ionic surfactant molecules. This process can be governed not only by the nature of such surfactants but also by others factors like the presence of additives, formulation preparation and properties of the encapsulated hydrophobic or hydrophilic molecules. This review is aimed at providing recent information for using cationic niosomes for gene delivery purposes with particular emphasis on improving the transportation of antisense oligonucleotides (ASOs), small interference RNAs (siRNAs), aptamers and plasmids (pDNA).


2018 ◽  
Vol 552 (1-2) ◽  
pp. 48-55 ◽  
Author(s):  
Mohamed Mashal ◽  
Noha Attia ◽  
Cristina Soto-Sánchez ◽  
Gema Martínez-Navarrete ◽  
Eduardo Fernández ◽  
...  

2018 ◽  
Vol 550 (1-2) ◽  
pp. 388-397 ◽  
Author(s):  
Ilia Villate-Beitia ◽  
Idoia Gallego ◽  
Gema Martínez-Navarrete ◽  
Jon Zárate ◽  
Tania López-Méndez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document