Interleukin-8 induces DNA synthesis, migration and down-regulation of cleaved caspase-3 in cultured human gingival epithelial cells

2014 ◽  
Vol 50 (4) ◽  
pp. 479-485 ◽  
Author(s):  
T. Fujita ◽  
T. Yoshimoto ◽  
S. Matsuda ◽  
M. Kajiya ◽  
M. Kittaka ◽  
...  
2016 ◽  
Vol 232 (6) ◽  
pp. 1539-1547 ◽  
Author(s):  
Mahmoud Rouabhia ◽  
Hyun Jin Park ◽  
Abdelhabib Semlali ◽  
Andrew Zakrzewski ◽  
Witold Chmielewski ◽  
...  

2014 ◽  
Vol 93 (11) ◽  
pp. 1148-1154 ◽  
Author(s):  
T. Yoshimoto ◽  
T. Fujita ◽  
K. Ouhara ◽  
M. Kajiya ◽  
H. Imai ◽  
...  

Apoptosis is thought to contribute to the progression of periodontitis. It has been suggested that the apoptosis of epithelial cells may contribute to the loss of epithelial barrier function. Smad2, a downstream signaling molecule of TGF-β receptors (TGF-βRs), is critically involved in apoptosis in several cell types. However, the relationship between smad2 and bacteria-induced apoptosis has not yet been elucidated. It is possible that the regulation of apoptosis induced by periodontopathic bacteria may lead to novel preventive therapies for periodontitis. Therefore, in the present study, we investigated the involvement of smad2 phosphorylation in apoptosis of human gingival epithelial cells induced by Aggregatibacter actinomycetemcomitans ( Aa). Aa apparently induced the phosphorylation of smad2 in primary human gingival epithelial cells (HGECs) or the human gingival epithelial cell line, OBA9 cells. In addition, Aa induced phosphorylation of the serine residue of the TGF-β type I receptor (TGF-βRI) in OBA9 cells. SB431542 (a TGF-βRI inhibitor) and siRNA transfection for TGF-βRI, which reduced both TGF-βRI mRNA and protein levels, markedly attenuated the Aa-induced phosphorylation of smad2. Furthermore, the disruption of TGF-βRI signaling cascade by SB431542 and siRNA transfection for TGF-βRI abrogated the activation of cleaved caspase-3 expression and repressed apoptosis in OBA9 cells treated with Aa. Thus, Aa induced apoptosis in gingival epithelial cells by activating the TGF-βRI-smad2-caspase-3 signaling pathway. The results of the present study may suggest that the periodontopathic bacteria, Aa, activates the TGF-βR/smad2 signaling pathway in human gingival epithelial cells and induces apoptosis in epithelial cells, which may lead to new therapeutic strategies that modulate the initiation of periodontitis.


2005 ◽  
Vol 73 (1) ◽  
pp. 622-626 ◽  
Author(s):  
Hiroshi Egusa ◽  
Hiroki Nikawa ◽  
Seicho Makihira ◽  
Anahid Jewett ◽  
Hirofumi Yatani ◽  
...  

ABSTRACT Increased induction of interleukin 8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by oral epithelial cells may play a role in the host defense mechanism in oropharyngeal candidiasis; however, little is known about the expression feature of these molecules on human gingival epithelial cells (HGECs) during Candida albicans infection. In this report we present evidence that neutralization with antibody against ICAM-1 inhibited both the adherence of C. albicans to HGECs and the Candida-induced production of IL-8, suggesting a role for ICAM-1 in recognition and signaling in HGECs to express IL-8 upon infection with C. albicans.


2007 ◽  
Vol 76 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Shinsuke Onishi ◽  
Kiyonobu Honma ◽  
Shuang Liang ◽  
Panagiota Stathopoulou ◽  
Denis Kinane ◽  
...  

ABSTRACT Tannerella forsythia is a gram-negative anaerobe strongly associated with chronic human periodontitis. This bacterium expresses a cell surface-associated and secreted protein, designated BspA, which has been recognized as an important virulence factor. The BspA protein belongs to the leucine-rich repeat (LRR) and bacterial immunoglobulin-like protein families. BspA is, moreover, a multifunctional protein which interacts with a variety of host cells, including monocytes which appear to respond to BspA through Toll-like receptor (TLR) signaling. Since gingival epithelium forms a barrier against periodontal pathogens, this study was undertaken to determine if gingival epithelial cells respond to BspA challenge and if TLRs play any role in BspA recognition. This study was also directed towards identifying the BspA domains responsible for cellular activation. We provide direct evidence for BspA binding to TLR2 and demonstrate that the release of the chemokine interleukin-8 from human gingival epithelial cells by BspA is TLR2 dependent. Furthermore, the LRR domain of BspA is involved in activation of TLR2, while TLR1 serves as a signaling partner. Thus, our findings suggest that BspA is an important modulator of host innate immune responses through activation of TLR2 in cooperation with TLR1.


Sign in / Sign up

Export Citation Format

Share Document