Decreased expression of E-cadherin byPorphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function

2016 ◽  
Vol 52 (1) ◽  
pp. 42-50 ◽  
Author(s):  
M. Abe-Yutori ◽  
T. Chikazawa ◽  
K. Shibasaki ◽  
S. Murakami
2012 ◽  
Vol 287 (50) ◽  
pp. 42288-42298 ◽  
Author(s):  
Rosanna Malbran Forteza ◽  
S. Marina Casalino-Matsuda ◽  
Nieves S. Falcon ◽  
Monica Valencia Gattas ◽  
Maria E. Monzon

2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S29-S30
Author(s):  
Chirosree Bandyopadhyay ◽  
Leslayann Schecterson ◽  
Barry Gumbiner

Abstract Deficits in gastrointestinal (GI) epithelial barrier function play important roles in the pathogenesis of Inflammatory Bowel Disease (IBD). The CDH1 gene encoding E-cadherin, a key component of the epithelial junctional complex, is associated with Ulcerative Colitis (UC), and perhaps Crohn’s disease (CD). E-cadherin is the principle adhesive component of the adherens junction, and it regulates paracellular permeability by facilitating the formation of tight junctions and organizing the entire epithelial junction complex. We have identified monoclonal antibodies (mAbs) that bind to E-cadherin and activate adhesion in a variety of epithelial cells. In this study, we aim to test the hypothesis that strengthening E-cadherin adhesion with activating mAbs will enhance barrier function and decrease progression of IBD while maintaining mucosal health and homeostasis. Mouse mAbs to E-cadherin have been tested in vivo using the IL10-knock out mouse and adoptive T cell transfer model of colitis with similar histological evaluation. Transfer of CD4+CD45Rb high T cells from donor to immunocompromised mice produced typical histologic lesions for the adoptive transfer model including inflammation of the mucosa/submucosa, crypt damage, erosions, edema, and epithelial hyperplasia. E-Cadherin activating mAb (r56.4) treatment reduced total colitis score, mucosal hyperplasia, inflammation, gland loss scores, and neutrophilic infiltration in CD45Rb high T cell recipient mice compared to control E-cad mAb (r19.1–10) treatment. In IL10 KO BL6 mouse model of colitis, average lesion severity scores were lower in the r56.4 treatment group in comparison to the r19.1–10 treatment group for all the histological hallmarks of colitis. Further studies are in progress to investigate the therapeutic potential of E-Cadherin mAbs in the rescue of inflammation in pre-clinical mouse models of colitis.


2016 ◽  
Vol 36 (9) ◽  
pp. 1332-1341 ◽  
Author(s):  
Tongtong Zou ◽  
Suraj K. Jaladanki ◽  
Lan Liu ◽  
Lan Xiao ◽  
Hee Kyoung Chung ◽  
...  

The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. TheH19long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report thatH19plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675).H19overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressingH19prevented the stimulation of miR-675 processing fromH19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate thatH19interacts with HuR and regulates the intestinal epithelial barrier function via theH19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.


2001 ◽  
Vol 281 (3) ◽  
pp. G705-G717 ◽  
Author(s):  
Hedy H. Ginzberg ◽  
Vera Cherapanov ◽  
Qin Dong ◽  
Andre Cantin ◽  
Christopher A. G. McCulloch ◽  
...  

Neutrophil-mediated injury to gut epithelium may lead to disruption of the epithelial barrier function with consequent organ dysfunction, but the mechanisms of this are incompletely characterized. Because the epithelial apical junctional complex, comprised of tight and adherens junctions, is responsible in part for this barrier function, we investigated the effects of neutrophil transmigration on these structures. Using a colonic epithelial cell line, we observed that neutrophils migrating across cell monolayers formed clusters that were associated with focal epithelial cell loss and the creation of circular defects within the monolayer. The loss of epithelial cells was partly attributable to neutrophil-derived proteases, likely elastase, because it was prevented by elastase inhibitors. Spatially delimited disruption of epithelial junctional complexes with focal loss of E-cadherin, β-catenin, and zonula occludens 1 was observed adjacent to clusters of transmigrating neutrophils. During neutrophil transmigration, fragments of E-cadherin were released into the apical supernatant, and inhibitors of neutrophil elastase prevented this proteolytic degradation. Addition of purified leukocyte elastase also resulted in release of E-cadherin fragments, but only after opening of tight junctions. Taken together, these data demonstrate that neutrophil-derived proteases can mediate spatially delimited disruption of epithelial apical junctions during transmigration. These processes may contribute to epithelial loss and disruption of epithelial barrier function in inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document