scholarly journals The role of non-rapid eye movement slow-wave activity in prefrontal metabolism across young and middle-aged adults

2016 ◽  
Vol 25 (3) ◽  
pp. 296-306 ◽  
Author(s):  
Kristine A. Wilckens ◽  
Howard J. Aizenstein ◽  
Eric A. Nofzinger ◽  
Jeffrey A. James ◽  
Brant P. Hasler ◽  
...  
1998 ◽  
Vol 274 (2) ◽  
pp. R406-R411 ◽  
Author(s):  
Levente Kapás ◽  
Michael K. Hansen ◽  
Hee-Yoon Chang ◽  
James M. Krueger

The role of the vagus nerve in the somnogenic and pyrogenic effects of lipopolysaccharide (LPS) was studied in rats. Control rats ( n= 8) and rats subjected to bilateral subdiaphragmal vagotomy (VX; n = 9) were injected with 100 μg/kg ip LPS at the beginning of the dark period. Sleep and brain temperature (Tbr) were recorded for 23 h after the injections. LPS caused increases in non-rapid eye movement sleep (NREMS) for 12 h after the injection in control rats. Sleep intensity, as indicated by the slow-wave activity (SWA) of the electroencephalogram during NREMS, was suppressed. LPS elicited biphasic Tbr responses: an initial hypothermia was followed by increases in Tbr that lasted for ∼20 h. In vagotomized rats, the NREMS responses to LPS were blunted. The magnitude of the LPS-induced NREMS increases was about one-half of that seen in control rats, and these sleep responses lasted only for 6 h. LPS did not affect SWA in VX animals. VX completely abolished the hypothermic responses to LPS and shortened the duration of the hyperthermia. The results suggest that the subdiaphragmal vagi play an important, but not exclusive, role in the somnogenic and pyrogenic actions of intraperitoneally injected LPS.


2003 ◽  
Vol 285 (1) ◽  
pp. R99-R109 ◽  
Author(s):  
Hitoshi Yoshida ◽  
Takeshi Kubota ◽  
James M. Krueger

Sleep is regulated in part by the brain cytokine network, including tumor necrosis factor-α (TNF-α). TNF-α activates the transcription factor nuclear factor-κB, which in turn promotes transcription of many genes, including cyclooxygenase-2 (COX-2). COX-2 is in the brain and is an enzyme responsible for production of prostaglandin D2. The hypothesis that central COX-2 plays a role in the regulation of spontaneous and TNF-α-induced sleep was investigated. Three doses (0.5, 5, and 50 μg) of NS-398, a highly selective COX-2 inhibitor, were injected intracerebroventricularly. The highest dose decreased non-rapid eye movement sleep. The intermediate and highest doses decreased electroencephalographic slow-wave activity; the greatest reduction occurred after 50 μg of NS-398 during the first 3-h postinjection period. Rapid eye movement sleep and brain temperature were not altered by any dose of NS-398. Pretreatment of rabbits with 5 or 50 μg of NS-398 blocked the TNF-α-induced increases in non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature. These data suggest that COX-2 is involved in the regulation of spontaneous and TNF-α-induced sleep.


1988 ◽  
Vol 255 (1) ◽  
pp. R27-R37 ◽  
Author(s):  
L. Trachsel ◽  
I. Tobler ◽  
A. A. Borbely

Sleep states and power spectra of the electroencephalogram were determined for consecutive 4-s epochs during 24 h in rats that had been implanted with electrodes under deep pentobarbital anesthesia. The power spectra in non-rapid eye movement sleep (NREMS) showed marked trends: low-frequency activity (0.75-7.0 Hz) declined progressively throughout the 12-h light period (L) and remained low during most of the 12-h dark period (D); high-frequency activity (10.25-25.0 Hz) rose toward the end of L and reached a maximum at the beginning of D. Within a single NREMS episode (duration 0.5-5.0 min), slow-wave activity (0.75-4.0 Hz) increased progressively to a plateau level. The rise was approximated by a saturating exponential function: although the asymptote level of the function showed a prominent 24-h rhythm, the time constant remained relatively stable (approximately 40 s). After short interruptions of NREMS episodes, slow-wave activity rose more steeply than after long interruptions. The marked 24-h variation of maximum slow-wave activity within NREMS episodes may reflect the level of a homeostatic sleep process.


1995 ◽  
Vol 269 (3) ◽  
pp. R691-R701 ◽  
Author(s):  
P. Franken ◽  
I. Tobler ◽  
A. A. Borbely

To assess the influence of the photoperiod on sleep regulation, laboratory rats were adapted to a long photoperiod (LPP; 16:8-h light-dark cycle, LD 16:8) or a short photoperiod (SPP; LD 8:16). The electroencephalogram (EEG) and cortical temperature (TCRT) were continuously recorded for a baseline day, a 24-h sleep deprivation (SD) period, and a recovery day. Data obtained previously for LD 12:12 served for comparison. Whereas the photoperiod exerted a prominent effect on the 24-h sleep pattern, the 24-h baseline level of sleep and the response to SD were little affected. Recovery from SD was characterized by a marked rise in rapid eye movement sleep, a moderate rise in non-rapid eye movement sleep, and an initial enhancement of EEG slow-wave activity followed by a decrease below baseline. The amplitude and phase of the "unmasked" 24-h component of TCRT did not differ between LPP and SPP. Computer simulations demonstrated that the changes of TCRT and EEG slow-wave activity can be largely accounted for by the sequence of the vigilance states. We conclude that the photoperiod does not affect the basic processes underlying sleep regulation.


SLEEP ◽  
2017 ◽  
Vol 40 (suppl_1) ◽  
pp. A248-A248
Author(s):  
DT Plante ◽  
JD Cook ◽  
MR Goldstein ◽  
ML Prairie ◽  
R Smith ◽  
...  

1991 ◽  
Vol 260 (1) ◽  
pp. R52-R58 ◽  
Author(s):  
M. R. Opp ◽  
F. Obal ◽  
J. M. Krueger

Rats received various doses of interleukin 1 (IL-1) (range, 0.5-25.0 ng) or pyrogen-free saline intracerebroventricularly during the rest (light) and the active (dark) cycles of the day, and sleep-wake activity and brain temperature were determined for 6 h. Low doses of IL-1 (0.5 ng at night, 2.5 ng during the day) increased both the duration of non-rapid-eye-movement sleep (NREMS) and electroencephalogram (EEG) slow-wave activity during NREMS episodes. Increasing doses of IL-1 had divergent effects on NREMS duration and EEG slow-wave activity, and the direction of the changes depended on the diurnal cycle. Thus NREMS duration was promoted at night and EEG slow-wave amplitudes during the day, whereas NREMS duration during the day and EEG slow-wave amplitudes at night were suppressed after higher doses of IL-1. High doses of IL-1 also induced decreases in rapid-eye-movement sleep during both phases of the day. Each dose of IL-1 that promoted NREMS also tended to increase brain temperature. These results demonstrate that IL-1 promotes NREMS in the rat. However, unlike previously reported findings in rabbits, the circadian rhythm of sleep regulation strongly interferes with the sleep-promoting activity of IL-1 in rats.


2006 ◽  
Vol 14 (7S_Part_26) ◽  
pp. P1390-P1390
Author(s):  
Brendan P. Lucey ◽  
Cristina D. Toedebusch ◽  
Jennifer S. McLeland ◽  
Eric C. Landsness ◽  
Lena McCue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document