A synonymous (c.3390C>T) or a splice-site (c.3380-2A>G) mutation causes exon 26 skipping in four patients with von Willebrand disease (2A/IIE)

2013 ◽  
Vol 11 (7) ◽  
pp. 1251-1259 ◽  
Author(s):  
M. T. Pagliari ◽  
L. Baronciani ◽  
I. Garcìa Oya ◽  
M. Solimando ◽  
S. La Marca ◽  
...  
2021 ◽  
Vol 22 (24) ◽  
pp. 13248
Author(s):  
John G. Conboy

A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism: the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.


2012 ◽  
Vol 108 (10) ◽  
pp. 662-671 ◽  
Author(s):  
Hamideh Yadegari ◽  
Julia Driesen ◽  
Anna Pavlova ◽  
Arijit Biswas ◽  
Hans-Jörg Hertfelder ◽  
...  

SummaryVon Willebrand disease (VWD) is the most common inherited bleeding disorder caused by quantitative or qualitative defects of the von Willebrand factor (VWF). VWD is classified into three types – type 1 (partial quantitative deficiencies), type 2 (qualitative defects) and type 3 (complete deficiency of VWF). In this study we explored genotype and phenotype characteristics of patients with VWD with the aim of dissecting the distribution of mutations in different types of VWD. One hundred fourteen patients belonging to 78 families diagnosed to have VWD were studied. Mutation analysis was performed by direct sequencing of the VWF. Large deletions were investigated by multiplex ligation-dependent probe amplification (MLPA) analysis. The impact of novel candidate missense mutations and potential splice site mutations was predicted by in silico assessments. We identified mutations in 66 index patients (IPs) (84.6%). Mutation detection rate was 68%, 94% and 94% for VWD type 1, 2 and 3, respectively. In total, 68 different putative mutations were detected comprising 37 missense mutations (54.4%), 10 small deletions (14.7%), two small insertions (2.9%), seven nonsense mutations (10.3%), five splice-site mutations (7.4%), six large deletions (8.8%) and one silent mutation (1.5%). Twenty-six of these mutations were novel. Furthermore, in type 1 and type 2 VWD, the majority of identified mutations (74% vs. 88.1%) were missense substitutions while mutations in type 3 VWD mostly caused null alleles (82%). Genotyping in VWD is a helpful tool to further elucidate the pathogenesis of VWD and to establish the relationship between genotype and phenotype.


2007 ◽  
Vol 98 (08) ◽  
pp. 464-466 ◽  
Author(s):  
Inge Vrelust ◽  
Inge Vangenechten ◽  
Reinhard Schneppenheim ◽  
Marc Van der Planken ◽  
Alain Gadisseur

1999 ◽  
Vol 82 (09) ◽  
pp. 1061-1064 ◽  
Author(s):  
Kingsley Hampton ◽  
F. Eric Preston ◽  
Ian Peake ◽  
Anne Goodeve ◽  
I. Mandy Nesbitt

SummaryUsing an ELISA-based method to detect type 2N von Willebrand disease (VWD), we found two individuals with absent FVIII binding. Direct sequencing of the FVIII binding region of the von Willebrand factor (VWF) gene showed that one individual had an R854Q substitution whilst the other had a T791M substitution. The very low FVIII binding and the VWF:Ag levels in both individuals suggested a second defect on the other VWF allele. Conformation sensitive gel electrophoresis of polymerase chain reaction amplified DNA was used to detect an additional change in the VWF gene of each patient. Direct sequencing confirmed a previously unreported G to A transition in the donor splice site in intron 25 of both individuals which should result in a null allele. This was confirmed by mRNA analysis. These two individuals therefore have compound heterozygous VWD in which the only expressed allele has a type 2N mutation. In our population, such compound heterozygosity appears to be a significant cause of type 2N VWD.


2006 ◽  
Vol 96 (12) ◽  
pp. 711-716 ◽  
Author(s):  
Lisa Gallinaro ◽  
Francesca Sartorello ◽  
Elena Pontara ◽  
Maria Cattini ◽  
Antonella Bertomoro ◽  
...  

SummaryWe describe the complex picture associated with a mutated splice junction in intron 13 of von Willebrand factor (VWF) gene. The proband, characterized by a marked decrease in plasma and platelet VWF and near normal multimer organization, was classified as recessive type 1 von Willebrand disease (VWD). Genetic analysis demonstrated that he was homozygous for the 1534–3C>A mutation in the consensus sequence of the acceptor splicing site of intron 13 of the VWF gene. Platelet mRNA analysis documented three VWF transcripts: a wild type generated by the correct recognition of the mutated splice site, a smaller transcript not containing exon 14, and a longer one that, in addition to exons 13 and 14, included a 62bp fragment corresponding to the end of intron 13. The small transcript derives from the skipping of exon 14, the long one from the activation of a cryptic splice site in intron 13; both show a premature stop codon inVWF propeptide, so the probandVWF derives entirely from the correct splice site recognition. Combined incomplete exon skipping and cryptic splice site activation are first recognized in VWD. Since the 1534–3C>A mutation does not abolish the normal processing of mRNA, it is unlikely to be found in type 3VWD. This mutation therefore appears to be peculiar to type 1 VWD.


1998 ◽  
Vol 80 (08) ◽  
pp. 332-337 ◽  
Author(s):  
M. Rieger ◽  
H. P. Schwarz ◽  
P. L. Turecek ◽  
F. Dorner ◽  
van Mourik ◽  
...  

SummaryIn humans, type III von Willebrand disease is caused by deletions or nonsense mutations. In dogs, the underlying genetic defects have not been determined yet. We searched for the genetic defect in four related type III deficient Dutch Kooiker dogs obtained from one breeder. Mutation analysis was performed with total RNA isolated from platelets or whole blood. The complete coding region of the vWf gene was amplified by RT-PCR and sequenced by the cycle sequencing technique. Two homozygous mutations were found, a G→A transition at the first position of the donor splice site sequence of intron 16 (TGgtaagt→TGataagt) and a missense mutation at nt 208 (G→A) (1). The splice site defect resulted in the generation of a transcript containing 46bp of intron sequence and a stop codon at amino acid position 729 in the propeptide region of the vWf protein. This mutation seems to be causative for the type III phenotype. The effect of the missense mutation in exon 3 which causes a change of Val to Ile on the vWD phenotype is unclear. Probably, this transition represents a polymorphism occurring in Dutch Kooiker dogs. Both mutations were not present in 5 healthy mongrel dogs.Parts of this paper were presented at the 39th annual meeting of the American Society of Hematology (ASH), December 5-9, San Diego, USA


2009 ◽  
Vol 29 (S 01) ◽  
pp. S7-S12
Author(s):  
M. Spannagl ◽  
W. Schramm ◽  
H. Krebs ◽  

SummarySince 1978 an annual multicentric survey regarding the epidemiology of patients suffering of haemophilia is performed with support of haemophilia treating centres of any size. Again the actual compilation is resting upon a broad database returning to over 30 years of inquiry well representing both the actual and retrospective status of mortality. Prompted was exclusively information about patients with haemophilia A, B and von Willebrand disease. In particular anonymous data concerning the last 12 months about number of treated patients, type and severity of illness, HIV-status and detailed information about causes of death was inquired. This data was merged with existing data and analyzed statistically. In the 2007/2008 survey, a total


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


Sign in / Sign up

Export Citation Format

Share Document