Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden

2019 ◽  
Vol 30 (5) ◽  
pp. 917-928 ◽  
Author(s):  
Leen Depauw ◽  
Michael P. Perring ◽  
Jörg Brunet ◽  
Sybryn L. Maes ◽  
Haben Blondeel ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 245
Author(s):  
Nguyen Dang Cuong ◽  
Köhl Michael ◽  
Mues Volker

Forest landscape restoration is a widely accepted approach to sustainable forest management. In addition to revitalizing degraded sites, forest landscape restoration can increase the supply of sustainable timber and thereby reduce logging in natural forests. The current study presents a spatial land use optimization model and utilizes a linear programming algorithm that integrates timber production and timber processing chains to meet timber demand trade-offs and timber supply. The objective is to maximize yield and profit from forest plantations under volatile timber demands. The model was parameterized for a case study in Thai Nguyen Province, Vietnam, where most forest plantations grow Acacia mangium (A. mangium). Data were obtained from field surveys on tree growth, as well as from questionnaires to collect social-economic information and determine the timber demand of local wood processing mills. The integration of land use and wood utilization approaches reduces the amount of land needed to maintain a sustainable timber supply and simultaneously leads to higher yields and profits from forest plantations. This forest management solution combines economic and timber yield aspects and promotes measures focused on economic sustainability and land resource efficiency.


2021 ◽  
Vol 167 ◽  
pp. 106268
Author(s):  
Mehdi Heydari ◽  
Sina Attar Roshan ◽  
Reza Omidipour ◽  
Manuel Esteban Lucas-Borja ◽  
Bernard Prévosto

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2021 ◽  
Vol 494 ◽  
pp. 119360
Author(s):  
Mehdi Heydari ◽  
Sina Attar Roshan ◽  
Manuel Esteban Lucas-Borja ◽  
Reza Omidipour ◽  
Bernard Prévosto

2013 ◽  
Vol 10 (3) ◽  
pp. 1501-1516 ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
P. Ciais

Abstract. Regional cooling resulting from increases in surface albedo has been identified in several studies as the main biogeophysical effect of past land use-induced land cover changes (LCC) on climate. However, the amplitude of this effect remains quite uncertain due to, among other factors, (a) uncertainties in the extent of historical LCC and, (b) differences in the way various models simulate surface albedo and more specifically its dependency on vegetation type and snow cover. We derived monthly albedo climatologies for croplands and four other land cover types from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. We then reconstructed the changes in surface albedo between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 and 1992 used by seven land surface models (LSMs) in the context of the LUCID ("Land Use and Climate: identification of robust Impacts") intercomparison project. These reconstructions show surface albedo increases larger than 10% (absolute) in winter, and larger than 2% in summer between 1870 and 1992 over areas that experienced intense deforestation in the northern temperate regions. The historical surface albedo changes estimated with MODIS data were then compared to those simulated by the various climate models participating in LUCID. The inter-model mean albedo response to LCC shows a similar spatial and seasonal pattern to the one resulting from the MODIS-based reconstructions, that is, larger albedo increases in winter than in summer, driven by the presence of snow. However, individual models show significant differences between the simulated albedo changes and the corresponding reconstructions, despite the fact that land cover change maps are the same. Our analyses suggest that the primary reason for those discrepancies is how LSMs parameterize albedo. Another reason, of secondary importance, results from differences in their simulated snow extent. Our methodology is a useful tool not only to infer observations-based historical changes in land surface variables impacted by LCC, but also to point out deficiencies of the models. We therefore suggest that it could be more widely developed and used in conjunction with other tools in order to evaluate LSMs.


2020 ◽  
Vol 13 (1) ◽  
pp. 301-308
Author(s):  
LT Oliveira ◽  
RA Cecílio ◽  
SS Zanetti ◽  
RA Loos ◽  
DA Bressiani ◽  
...  

2018 ◽  
Vol 60 (1) ◽  
pp. 3-10
Author(s):  
Krzysztof Jabłoński ◽  
Włodzimierz Stempski

Abstract Forests and forest management play a vital role in capture and storage of carbon dioxide, which contributes to mitigation of climate change. Forests are not only a natural carbon sink. Proper forest management can enhance biomass production, providing wood to be converted into e.g. construction timber, paper and furniture as well as wood fuels and, as a result, considerably enlarge this carbon sink. Poland, being a party of the Climate Convention and Kyoto Protocol and a member of the EU is obliged to provide yearly reports on carbon emissions and sequestration, including the Land Use, Land Use Change and Forestry (LULUCF) sector, of which forestry is the leading constituent. Forests, with the sequestration rate at a level of 3.93 t CO2·ha−1 form practically the only important carbon sink in the LULUCF category. Unfortunately the LULUCF sector has not been yet included in the current climate policy framework. The purpose of the study was an attempt to estimate the hypothetical value of carbon stored in forestry, resulting from the reported quantities of the emitted and sequestered carbon. The calculations were based on figures included in the National Inventory Report for Poland, reported yearly to the Secretariat of the Climate Convention. Among the forestry carbon sources/sinks, reported annually, the sequestration resulting from forest management significantly exceeds the net sequestration from afforestation/deforestation activities. Average data from recent years show that forest management is a net CO2 sink, with 12 Mt CO2·y−1 (above the forest management reference level, FMRL), and when combined with the carbon pool change resulting from afforestation/deforestation activities, it can be regarded as a net carbon sink sequestering nearly 15 Mt CO2·y−1. That value, when multiplied by the price of carbon emission allowance (e.g. EUA), could be a source of over 80 mill Euros per year, if used as a commodity on the emissions market. Due to high price volatility of CO2 emission allowances, the calculated profits are hypothetical, and the EU Emissions Trading System does not include forestry. These potential gains can become realistic after the LULUCF sector has been included in the emissions trading system.


Sign in / Sign up

Export Citation Format

Share Document