Insights into chromosomal evolution of Cicadomorpha using fluorochrome staining and mapping 18S rRNA and H3 histone genes

2018 ◽  
Vol 57 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Allison Anjos ◽  
Andressa Paladini ◽  
Olivia Evangelista ◽  
Diogo C. Cabral‐de‐Mello
2019 ◽  
Vol 157 (4) ◽  
pp. 239-248 ◽  
Author(s):  
Amanda T. Borges ◽  
Marcelo B. Cioffi ◽  
Luiz A.C. Bertollo ◽  
Rodrigo X. Soares ◽  
Gideão W.W.F. Costa ◽  
...  

Centropomus is the sole genus of the Centropomidae family (Teleostei), comprising 12 species widely distributed throughout the Western Atlantic and Eastern Pacific, with 6 of them occurring in the Western Atlantic in extensive sympatry. Their life history and phylogenetic relationships are well characterized; however, aspects of chromosomal evolution are still unknown. Here, cytogenetic analyses of 2 Centropomus species of great economic value (C. undecimalis and C. mexicanus) were performed using conventional (Giemsa, Ag-NOR, and fluorochrome staining, C- and replication banding) and molecular (chromosomal mapping of 18S and 5S rDNA, H2A-H2B and H3 hisDNA, and (TTAGGG)n repeats) approaches. The karyotypes of both species were composed of 48 solely acrocentric chromosomes (2n = 48; FN = 48), but the single ribosomal site was located in varying positions in the long arms of the second largest chromosome pair. Replication bands were generally similar, although conspicuous differences were observed in some chromosome regions. In both species, the histone H3 genes were located on 3 apparently homeologous chromosome pairs, but the exact position of these clusters differed slightly. Interspecific hisDNA and rDNA site displacements can indicate the occurrence of multiple paracentric inversions during the evolutionary diversification of the Centropomus genomes. Although the karyotypes remained similar in both species, our data demonstrate an unsuspected microstructural reorganization between them, driven most likely by a series of paracentric inversions.


Micron ◽  
2008 ◽  
Vol 39 (7) ◽  
pp. 1036-1041 ◽  
Author(s):  
Issakar Lima Souza ◽  
Ludier Kesser Santos-Silva ◽  
Paulo César Venere ◽  
Orlando Moreira-Filho

2021 ◽  
pp. 1-10
Author(s):  
Mara G. Tavares ◽  
Gisele A. Teixeira

Eumeninae represents the largest subfamily within Vespidae, with 3,600 species described. Of these, only 18 have been cytogenetically analysed. In the present study, we used both classical and molecular techniques to characterise and compare the karyotypes of 3 Eumeninae species, namely, <i>Ancistrocerus</i> sp., <i>Pachodynerus grandis,</i> and <i>Pachodynerus nasidens</i>. <i>Ancistrocerus</i> sp. presented a haploid chromosome number of n = 12, with the first 2 chromosomes of the karyotype being almost entirely heterochromatic and much larger than the remaining chromosomes. The 2 <i>Pachodynerus</i> species presented the same chromosome number (n = 11 and 2n = 22) but displayed different karyotypic formulae<i>.</i> Additionally, chromosomal polymorphisms were observed in the analysed <i>P. nasidens</i> female. In the 3 species, heterochromatin was located in one of the chromosome arms. Fluorochrome staining revealed a balanced composition of AT and GC bases within the chromatin for each of the 3 species, except for few regions that were visibly GC-rich. All species had a single 18S rDNA site that co-localised with GC-rich regions; however, this localisation varied from species to species and not all GC-rich regions corresponded to ribosomal genes. Based on the cytogenetic data obtained here, we discuss the possible numerical/structural rearrangements that may be involved in the karyotypic evolution of the 3 studied species. In addition to the first description of the molecular cytogenetic characteristics of the Eumeninae subfamily and the genus <i>Pachodynerus</i>, this study also provides a relevant contribution towards the discussion of chromosomal evolution in Eumeninae wasps.


2014 ◽  
Vol 2 (42) ◽  
pp. 291-291
Author(s):  
Z.B. Tekebayeva ◽  
A.B. Shevtsov ◽  
X.K. Rakhymzhan ◽  
K.A. Aituganov ◽  
G.A. Babayeva ◽  
...  

RNA ◽  
2000 ◽  
Vol 6 (12) ◽  
pp. 1727-1736 ◽  
Author(s):  
NATALIA DEMESHKINA ◽  
MARINA REPKOVA ◽  
ALIYA VEN'YAMINOVA ◽  
DMITRI GRAIFER ◽  
GALINA KARPOVA

Sign in / Sign up

Export Citation Format

Share Document