scholarly journals Recent Advances in Understanding the Ecology of the Filamentous Bacteria Responsible for Activated Sludge Bulking

Author(s):  
Tadashi Nittami ◽  
Steven Batinovic
1988 ◽  
Vol 20 (11-12) ◽  
pp. 497-499
Author(s):  
M. Ziegler ◽  
M. Lange ◽  
P. Kämpfer ◽  
D. Hoffmeister ◽  
D. Weltin ◽  
...  

2013 ◽  
Vol 67 (7) ◽  
pp. 1557-1563 ◽  
Author(s):  
Wioleta Kocerba-Soroka ◽  
Edyta Fiałkowska ◽  
Agnieszka Pajdak-Stós ◽  
Beata Klimek ◽  
Ewa Kowalska ◽  
...  

The excessive growth of filamentous bacteria and the resultant bulking of activated sludge constitute a serious problem in numerous wastewater treatment plants. Lecane inermis rotifers were previously shown to be capable of reducing the abundance of Microthrix parvicella and Nostocoida limicola in activated sludge. In the present study, the effectiveness of four Lecane clones in reducing the abundance of Type 021N filamentous bacteria was investigated. Three independent experiments were carried out on activated sludge from three different treatment plants. We found that Lecane rotifers are efficient consumers of Type 021N filaments.


2012 ◽  
Vol 18 (4) ◽  
pp. 705
Author(s):  
Ping WANG ◽  
Zhisheng YU ◽  
Rong QI ◽  
Hongxun ZHANG

1989 ◽  
Vol 21 (6-7) ◽  
pp. 609-619 ◽  
Author(s):  
Y.-J. Shao ◽  
David Jenkins

Laboratory and pilot plant experiments on anoxic selector activated sludge systems were conducted on two wastewaters in some cases supplemented with nitrate, acetate or glucose. To prevent bulking sufficient anoxic selector detention time and nitrate levels must be available to reduce selector effluent soluble COD to below 100 mg/l and to reduce readily metabolizable organic matter to virtually zero (< 1 mg/l). Soluble COD/NO3-N removal stoichiometry is in the range 6.0-6.7. Selector systems have elevated soluble substrate removal and denitrification rates compared to CSTR systems. These rates are not affected greatly by temperature (20-25°C) for CSTR sludges but are for selector sludges. Upon exhaustion of nitrate in a selector soluble COD leaks out of the activated sludge in significant amounts. Thiothrix sp. and type 021N denitrify only to NO2 and at much slower rates than Zoogloearamigera does to N2. A sequencing batch system provides an optimistic estimate of the SVI that can be obtained by an anoxic selector system.


1991 ◽  
Vol 23 (4-6) ◽  
pp. 899-905 ◽  
Author(s):  
Y. Matsuzawa ◽  
T. Mino

Activated sludge mixed cultures were cultivated with a glucose containing substrate in order to investigate the relationship between the feeding pattern (continuous or intermittent feeding) and the glycogen reservation capacity of activated sludge. An experimental method to measure the maximum capacity of glycogen reservation in the sludge was developed. Sludge with higher glycogen reservation capacity has an ability to synthesize glycogen faster, which ensures the higher glucose uptake. Therefore, sludge which has high glycogen reservation capacity becomes predominant in intermittently fed reactors. When the feeding pattern was changed from continuous feeding to intermittent feeding, a filamentous bacterium, Type 1701, started to decrease and a gram positive tetrad coccus became predominant. When the feeding pattern was returned to continuous feeding, Type 1701 re-appeared. Type 1701 has lower glycogen reservation capacity than the tetrad coccus. Therefore, the former cannot dominate over the latter in intermittently fed reactors.


Author(s):  
Hisashi Satoh ◽  
Yukari Kashimoto ◽  
Naoki Takahashi ◽  
Takashi Tsujimura

A deep learning-based two-label classifier 1 recognized a 20% morphological change in the activated flocs. Classifier-2 quantitatively recognized an abundance of filamentous bacteria in activated flocs.


2014 ◽  
Vol 70 (6) ◽  
pp. 955-963 ◽  
Author(s):  
Ewa Liwarska-Bizukojc ◽  
Marcin Bizukojc ◽  
Olga Andrzejczak

Quantification of filamentous bacteria in activated sludge systems can be made by manual counting under a microscope or by the application of various automated image analysis procedures. The latter has been significantly developed in the last two decades. In this work a new method based upon automated image analysis techniques was elaborated and presented. It consisted of three stages: (a) Neisser staining, (b) grabbing of microscopic images, and (c) digital image processing and analysis. This automated image analysis procedure possessed the features of novelty. It simultaneously delivered data about aggregates and filaments in an individual calculation routine, which is seldom met in the procedures described in the literature so far. What is more important, the macroprogram performing image processing and calculation of morphological parameters was written in the same software which was used for grabbing of images. Previously published procedures required using two different types of software, one for image grabbing and another one for image processing and analysis. Application of this new procedure for the quantification of filamentous bacteria in the full-scale as well as laboratory activated sludge systems proved that it was simple, fast and delivered reliable results.


2007 ◽  
Vol 41 (19) ◽  
pp. 4349-4356 ◽  
Author(s):  
Andrew J. Schuler ◽  
David Jassby

Sign in / Sign up

Export Citation Format

Share Document