substrate removal
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 29)

H-INDEX

30
(FIVE YEARS 3)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Jiali Wang ◽  
Yang Dong ◽  
Christof Grewer

Neutral amino acid transporters ASCT1 and ASCT2 are two SLC1 (solute carrier 1) family subtypes, which are specific for neutral amino acids. The other members of the SLC1 family are acidic amino acid transporters (EAATs 1–5). While the functional similarities and differences between the EAATs have been well studied, less is known about how the subtypes ASCT1 and 2 differ in kinetics and function. Here, by performing comprehensive electrophysiological analysis, we identified similarities and differences between these subtypes, as well as novel functional properties, such as apparent substrate affinities of the inward-facing conformation (in the range of 70 μM for L-serine as the substrate). Key findings were: ASCT1 has a higher apparent affinity for Na+, as well as a larger [Na+] dependence of substrate affinity compared to ASCT2. However, the general sequential Na+/substrate binding mechanism with at least one Na+ binding first, followed by amino acid substrate, followed by at least one more Na+ ion, appears to be conserved between the two subtypes. In addition, the first Na+ binding step, presumably to the Na3 site, occurs with high apparent affinity (<1 mM) in both transporters. In addition, ASCT1 and 2 show different substrate selectivities, where ASCT1 does not respond to extracellular glutamine. Finally, in both transporters, we measured rapid, capacitive charge movements upon application and removal of amino acid, due to rearrangement of the translocation equilibrium. This charge movement decays rapidly, with a time constant of 4–5 ms and recovers with a time constant in the 15 ms range after substrate removal. This places a lower limit on the turnover rate of amino acid exchange by these two transporters of 60–80 s−1.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Wen Chen ◽  
Meixin Feng ◽  
Yongjun Tang ◽  
Jian Wang ◽  
Jianxun Liu ◽  
...  

GaN-on-Si resonant-cavity light-emitting diodes (RCLEDs) have been successfully fabricated through wafer bonding and Si substrate removal. By combining the chemical mechanical polishing technique, we obtained a roughness of about 0.24 nm for a scan area of 5 μm × 5 μm. The double-sided dielectric distributed Bragg reflectors could form a high-quality optical resonant cavity, and the cavity modes exhibited a linewidth of 1 nm at the peak wavelength of around 405 nm, corresponding to a quality factor of 405. High data transmission in free space with an opening in the eye diagram was exhibited at 150 Mbps, which is limited by the detection system. These results showed that GaN-based RCLEDs grown on Si are promising as a low-cost emitter for visible light communications in future.


2021 ◽  
Vol 13 (22) ◽  
pp. 12915
Author(s):  
Shuangshuang Wu ◽  
Xiujie Jia ◽  
Sheng Xiong ◽  
Fangyi Li ◽  
Mingliang Ma ◽  
...  

Wet shot peening (WSP) cleaning technology has the advantages of being green, having a high efficiency, and producing almost no pollution to the environment. Under the development trend of green environmental protection, WSP is more and more desired by the public. However, in the study of WSP cleaning paint, there is little research on process parameter optimization. Accordingly, this article uses an orthogonal experiment, taking the cleaning efficiency and the substrate removal mass as objectives, to optimize the parameters of pressure, stand-off distance, traverse rate, and cleaning times. The experimental results show that the cleaning efficiency is improved by increasing the pressure, stand-off distance, and traverse rate or decreasing the cleaning times within the scope of this experiment. The pressure and cleaning times are positively correlated with the substrate removal mass, whereas the traverse rate is negatively correlated. As the stand-off distance increases, the substrate removal mass initially increases and then decreases. The traverse rate has a significant influence on the cleaning efficiency and the substrate removal mass. The optimal process parameters based on the cleaning efficiency are 0.45 MPa pressure, 140 mm stand-off distance, 5 mm/s traverse rate, and one-time cleaning. Besides, the cleaning efficiency at such conditions is 64.23 %/min. Additionally, the substrate removal mass is optimized under 0.25 MPa pressure, 60 mm (or 140 mm) stand-off distance, 5 mm/s traverse rate, and one-time cleaning to give a substrate removal mass of approximately zero. The analysis of parameters provides a reference for selecting the parameters in the actual application of WSP cleaning.


Author(s):  
H. M. A. Shahzad ◽  
S. J. Khan ◽  
Z. Habib

Abstract A laboratory-scale anaerobic moving bed biofilm reactor (AnMBBR) was installed and operated at various hydraulic retention times (HRTs) of 20 to 1.5 d with surface area loading rate (SALR) of 0.86 to 11.43 gCOD/m2/d. Synthetic starch containing desizing wastewater with chemical oxygen demand (COD) of 12.75 g/L was prepared and fed into the reactor. Monod, modified Stover-Kincannon, Grau second-order and First-order substrate removal models were used to evaluate the results of AnMBBR. COD removal efficiency of bioreactor was dwindled by increasing the SALR or reducing the HRT. Decay coefficient (Kd) and yield coefficient (Y) for Monod model were 0.027 1/d and 1.01 mgVSS/mgCOD, respectively. Maximum substrate utilization rate (Umax) and kinetic constant (Kb) for Modified Stover-Kincannon model were estimated as 12.57 and 15.22 g/L/d, respectively. The constants (a and b) for Grau second-order model were found to be 1.09 and 1.31 whilst kinetic coefficient for Second-order model and First-order substrate removal model were 1.62 and 1.55 1/d, respectively. Modified Stover-Kincannon model and Grau second-order model were found to be the best fit for experimental data with R2 value of 0.99. The findings suggest that these models can be applied to predict the behaviour of AnMBBR on various scales.


2021 ◽  
Vol 15 ◽  
pp. 35-40
Author(s):  
A. Silva ◽  
I. Capela ◽  
L. Arroja ◽  
H. Nadais

This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in intermittent UASB (Upflow Anaerobic Sludge Bed) reactors. Several laboratory-scale tests were performed with different organic loads in a UASB reactor inoculated with flocculent sludge from an industrial wastewater treatment plant. The data obtained were used for determination of specific substrate removal rates and specific methane production rates and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy was observed mainly in the first day of all experiments and was attenuated in the second day. Effluent recirculation raised significantly the rate of removal of soluble and colloidal substrate and methane productivity as compared to literature results for batch assays without recirculation.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 449
Author(s):  
Robert Vaßen ◽  
Emine Bakan ◽  
Sigrid Schwartz-Lückge

Thermally sprayed ceramic coatings are often tested as free-standing layers to investigate different properties such as thermal expansion coefficient, thermal conductivity, sintering, mechanical behavior, corrosion resistance, gas tightness, or electrical properties. In this paper, four different substrate removal methods were used to obtain free-standing YSZ coatings. At first, spraying on a steel substrate and subsequent dissolution of the substrate-coating interface by hydrochloric acid (HCl) was used. Second, the steel substrate was removed by applying an electrical field via electrochemical corrosion of the surface of the substrate. In a third method, the coating was sprayed on a salt (NaCI) interlayer, which was removed later by dissolution in water. At last, the coating was sprayed on a graphite substrate and the substrate was removed by heat treatment. After the preparation of free-standing coatings, these were characterized using scanning electron microscopy, mercury porosimetry, indentation tests, and room temperature three-point bending tests, which allowed the determination of Young’s modulus and viscosity. The results revealed measurable differences in coating properties as a result of the substrate removal methods, i.e., HCl method led to higher porosity and lower modulus in the YSZ coating.


Author(s):  
A. Silva ◽  
C. Couras ◽  
I. Capela ◽  
L. Arroja ◽  
H. Nadais

This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in intermittent UASB (Upflow Anaerobic Sludge Bed) reactors. Several laboratory-scale tests were performed with different organic loads in a UASB reactor inoculated with flocculent sludge from an industrial wastewater treatment plant. The data obtained were used for determination of specific substrate removal rates and specific methane production rates and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy was observed mainly in the first day of all experiments and was attenuated in the second day. Effluent recirculation raised significantly the rate of removal of soluble and colloidal substrate and methane productivity as compared to literature results for batch assays without recirculation.


2021 ◽  
Vol 14 (3) ◽  
pp. 036501
Author(s):  
Idriss Abid ◽  
Eleonora Canato ◽  
Matteo Meneghini ◽  
Gaudenzio Meneghesso ◽  
Kai Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document