Geospatial technology applied to spatiotemporal assessment of Harike Wetland, Punjab

2017 ◽  
Vol 22 (4) ◽  
pp. 349-363
Author(s):  
Akanksha Bhardwaj ◽  
Gh Nabi Najar ◽  
Puneeta Pandey
2020 ◽  
Vol 40 (2) ◽  
pp. 330-349
Author(s):  
TEJPAL T ◽  
◽  
M.S. JAGLAN ◽  
B.S. CHAUDHARY ◽  
◽  
...  

2007 ◽  
Vol 57 (2) ◽  
pp. 78-84
Author(s):  
Michael Leitner ◽  
Jacqueline W. Mills ◽  
Andrew Curtis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ram Kumar Singh ◽  
Martin Drews ◽  
Manuel De la Sen ◽  
Prashant Kumar Srivastava ◽  
Bambang H. Trisasongko ◽  
...  

AbstractThe new COVID-19 coronavirus disease has emerged as a global threat and not just to human health but also the global economy. Due to the pandemic, most countries affected have therefore imposed periods of full or partial lockdowns to restrict community transmission. This has had the welcome but unexpected side effect that existing levels of atmospheric pollutants, particularly in cities, have temporarily declined. As found by several authors, air quality can inherently exacerbate the risks linked to respiratory diseases, including COVID-19. In this study, we explore patterns of air pollution for ten of the most affected countries in the world, in the context of the 2020 development of the COVID-19 pandemic. We find that the concentrations of some of the principal atmospheric pollutants were temporarily reduced during the extensive lockdowns in the spring. Secondly, we show that the seasonality of the atmospheric pollutants is not significantly affected by these temporary changes, indicating that observed variations in COVID-19 conditions are likely to be linked to air quality. On this background, we confirm that air pollution may be a good predictor for the local and national severity of COVID-19 infections.


2017 ◽  
Vol 11 (1) ◽  
pp. 219-238 ◽  
Author(s):  
Laxmi Goparaju ◽  
P. Rama Chandra Prasad ◽  
Firoz Ahmad

Abstract Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.


Sign in / Sign up

Export Citation Format

Share Document