scholarly journals Mg isotopic heterogeneity, Al-Mg isochrons, and canonical26Al/27Al in the early solar system

2012 ◽  
Vol 47 (12) ◽  
pp. 1980-1997 ◽  
Author(s):  
G. J. WASSERBURG ◽  
Josh WIMPENNY ◽  
Qing-Zhu YIN
2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


2012 ◽  
Vol 758 (1) ◽  
pp. 45 ◽  
Author(s):  
Frédéric Moynier ◽  
James M. D. Day ◽  
Wataru Okui ◽  
Tetsuya Yokoyama ◽  
Audrey Bouvier ◽  
...  

Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


2016 ◽  
Vol 50 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Tomohiro Usui ◽  
Audrey Bouvier ◽  
Justin I. Simon ◽  
Noriko Kita

Nature ◽  
2019 ◽  
Vol 569 (7754) ◽  
pp. 85-88 ◽  
Author(s):  
Imre Bartos ◽  
Szabolcs Marka

2021 ◽  
pp. 163-194
Author(s):  
Dante S. Lauretta ◽  
Heather L. Enos ◽  
Anjani T. Polit ◽  
Heather L. Roper ◽  
Catherine W.V. Wolner

2008 ◽  
Author(s):  
S. Itoh ◽  
H. Yurimoto ◽  
Takuma Suda ◽  
Takaya Nozawa ◽  
Akira Ohnishi ◽  
...  

2014 ◽  
Vol 127 ◽  
pp. 57-66 ◽  
Author(s):  
Thomas Mueller ◽  
E. Bruce Watson ◽  
Dustin Trail ◽  
Michael Wiedenbeck ◽  
James Van Orman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document