scholarly journals Transcriptomics of monarch butterflies ( Danaus plexippus ) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes

2019 ◽  
Vol 28 (22) ◽  
pp. 4845-4863 ◽  
Author(s):  
Wen‐Hao Tan ◽  
Tarik Acevedo ◽  
Erica V. Harris ◽  
Tiffanie Y. Alcaide ◽  
James R. Walters ◽  
...  
2012 ◽  
Vol 8 (6) ◽  
pp. 968-971 ◽  
Author(s):  
Kristen A. Baum ◽  
Wyatt V. Sharber

Monarch butterflies ( Danaus plexippus ) depend on the presence of host plants ( Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas.


2019 ◽  
Author(s):  
Wen-Hao Tan ◽  
Andrew J. Mongue ◽  
Jacobus C. de Roode ◽  
Nicole M. Gerardo ◽  
James R. Walters

ABSTRACTImmune genes presumably rapidly evolve as pathogens exert strong selection pressures on host defense, but the evolution of immune genes is also constrained by trade-offs with other biological functions and shaped by the environmental context. Thus, immune genes may exhibit complex evolutionary patterns, particularly when organisms disperse to or live in variable environments. We examined the evolutionary patterns of the full set of known canonical immune genes within and among populations of monarch butterflies (Danaus plexippus), and relative to a closely related species (D. gilippus). Monarchs represent a system with a known evolutionary history, in which North American monarchs dispersed to form novel populations across the world, providing an opportunity to explore the evolution of immunity in the light of population expansion into novel environments. By analyzing a whole-genome resequencing dataset across populations, we found that immune genes as a whole do not exhibit consistent patterns of selection, differentiation, or genetic variation, but that patterns are specific to functional classes. Species comparisons between D. plexippus and D. gilippus and analyses of monarch populations both revealed consistently low levels of genetic variation in signaling genes, suggesting conservation of these genes over evolutionary time. Modulation genes showed the opposite pattern, with signatures of relaxed selection across populations. In contrast, recognition and effector genes exhibited less consistent patterns. When focusing on genes with exceptionally strong signatures of selection or differentiation, we also found population-specific patterns, consistent with the hypothesis that monarch populations do not face uniform selection pressures with respect to immune function.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 567
Author(s):  
Misty Stevenson ◽  
Kalynn L. Hudman ◽  
Alyx Scott ◽  
Kelsey Contreras ◽  
Jeffrey G. Kopachena

Based on surveys of winter roost sites, the eastern migratory population of the monarch butterfly (Danaus plexippus) in North America appears to have declined in the last 20 years and this has prompted the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results suggest that ecological processes may have buffered the effects of predators and improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.


2013 ◽  
Vol 280 (1768) ◽  
pp. 20131087 ◽  
Author(s):  
D. T. Tyler Flockhart ◽  
Leonard I. Wassenaar ◽  
Tara G. Martin ◽  
Keith A. Hobson ◽  
Michael B. Wunder ◽  
...  

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies ( Danaus plexippus ) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km 2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.


2021 ◽  
pp. 1-16
Author(s):  
Alana A.E. Wilcox ◽  
Amy E.M. Newman ◽  
D. Ryan Norris

Abstract Neonicotinoid insecticides are used to reduce crop damage caused by insect pests, but sublethal levels could affect development and reproduction in nontarget insects, such as monarch butterflies (Danaus plexippus) (Lepidoptera: Nymphalidae). To investigate the impact of field-realistic concentrations of the neonicotinoid clothianidin on monarch butterflies, we grew swamp milkweed (Asclepias incarnata) (Apocynaceae) in either low (15 ng/g of soil) or high (25 ng/g of soil) levels of clothianidin, or in a control (0 ng/g), then raised monarchs on the milkweed. Morphological traits of monarch caterpillars were measured during development and, once they eclosed, were mated as adults to quantify egg size and mass and the number of eggs laid. Although the effects of the treatment had complex effects on caterpillar length, width and volume of late-instar caterpillars were negatively affected. Fifth-instar caterpillars from the high-dose insecticide treatment had lower mass than other groups. Adult monarch butterflies raised on treated milkweed were larger than controls, but clothianidin exposure did not affect the number of eggs laid or egg size. Although the magnitude of the effect depends on clothianidin concentration, our results suggest that exposure to clothianidin during early life can impact monarch caterpillar development but is unlikely to reduce female reproductive output.


Sign in / Sign up

Export Citation Format

Share Document