scholarly journals Semi‐quantitative metabarcoding reveals how climate shapes arthropod community assembly along elevation gradients on Hawaii Island

2021 ◽  
Author(s):  
Jun Ying Lim ◽  
Jairo Patiño ◽  
Suzuki Noriyuki ◽  
Luis Cayetano ◽  
Rosemary G. Gillespie ◽  
...  
2016 ◽  
Author(s):  
Scott Ferrenberg ◽  
Alexander S. Martinez ◽  
Akasha M. Faist

Background. Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods. Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies diversity and assemblages. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models calculated from observed vs. expected levels of species turnover (Beta diversity) among samples. Results. Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion. Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a ground-dwelling arthropod community following a disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of different processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory.


2016 ◽  
Author(s):  
Scott Ferrenberg ◽  
Alexander S. Martinez ◽  
Akasha M. Faist

Background. Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods. Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies diversity and assemblages. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models calculated from observed vs. expected levels of species turnover (Beta diversity) among samples. Results. Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion. Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a ground-dwelling arthropod community following a disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of different processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2545 ◽  
Author(s):  
Scott Ferrenberg ◽  
Alexander S. Martinez ◽  
Akasha M. Faist

BackgroundUnderstanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces.MethodsUsing a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples.ResultsTree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors.DiscussionOur results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 667
Author(s):  
Scott Ferrenberg ◽  
Philipp Wickey ◽  
Jonathan D. Coop

The increasing frequency and severity of wildfires in semi-arid conifer forests as a result of global change pressures has raised concern over potential impacts on biodiversity. Ground-dwelling arthropod communities represent a substantial portion of diversity in conifer forests, and could be particularly impacted by wildfires. In addition to direct mortality, wildfires can affect ground-dwelling arthropods by altering understory characteristics and associated deterministic community assembly processes (e.g., environmental sorting). Alternatively, disturbances have been reported to increase the importance of stochastic community assembly processes (e.g., probabilistic dispersal and colonization rates). Utilizing pitfall traps to capture ground-dwelling arthropods within forest stands that were burned by one or two wildfires since 1996 in the Jemez Mountains of northern New Mexico, United States (USA), we examined the potential influences of deterministic versus stochastic processes on the assembly of these diverse understory communities. Based on family-level and genera-level arthropod identifications, we found that the multivariate community structures differed among the four fire groups surveyed, and were significantly influenced by the quantities of duff, litter, and coarse woody debris, in addition to tree basal area and graminoid cover. Taxon diversity was positively related to duff quantities, while taxon turnover was positively linked to exposed-rock cover and the number of logs on the ground. Despite the significant effects of these understory properties on the arthropod community structure, a combination of null modeling and metacommunity analysis revealed that both deterministic and stochastic processes shape the ground-dwelling arthropod communities in this system. However, the relative influence of these processes as a function of time since the wildfires or the number of recent wildfires was not generalizable across the fire groups. Given that different assembly processes shaped arthropod communities among locations that had experienced similar disturbances over time, increased efforts to understand the processes governing arthropod community assembly following disturbance is required in this wildfire-prone landscape.


2016 ◽  
Author(s):  
Scott Ferrenberg ◽  
Alexander S. Martinez ◽  
Akasha M. Faist

Background. Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods. Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies diversity and assemblages. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models calculated from observed vs. expected levels of species turnover (Beta diversity) among samples. Results. Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion. Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a ground-dwelling arthropod community following a disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of different processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2017 ◽  
Vol 79 (2) ◽  
pp. 165-175 ◽  
Author(s):  
KL Vergin ◽  
N Jhirad ◽  
J Dodge ◽  
CA Carlson ◽  
SJ Giovannoni

Sign in / Sign up

Export Citation Format

Share Document