scholarly journals A pathogenicity determinant maps to the N-terminal coat protein region of thePepino mosaic virusgenome

2014 ◽  
Vol 16 (3) ◽  
pp. 308-315 ◽  
Author(s):  
Celia R. A. Duff-Farrier ◽  
Andy M. Bailey ◽  
Neil Boonham ◽  
Gary D. Foster
1989 ◽  
pp. 131-132
Author(s):  
D. Mattanovich ◽  
G. Himmler ◽  
M. Laimer ◽  
A. da Camara Machado ◽  
V. Hanzer ◽  
...  

2011 ◽  
Vol 156 (12) ◽  
pp. 2279-2283 ◽  
Author(s):  
Katalin Salánki ◽  
László Kiss ◽  
Ákos Gellért ◽  
Ervin Balázs

2021 ◽  
Vol 3 (1) ◽  
pp. 28-34
Author(s):  
Fizza Akhter ◽  
Muhammad Tahir

Begomoviruses are a serious threat to cotton production throughout the world. In Pakistan, enormous crop losses occur as a result of cotton leaf curl disease (CLCuD) caused by begomoviruses. Molecular characterization of begomoviruses has made possible the identification and analysis of begomoviruses prevalent in a host plant. Infected cotton leaf sample (C-59) was obtained from area around Khanewal during 2011. The total DNA was isolated from the infected sample by Cetyl trimethyl ammonium bromide (CTAB) method. An expected size band of approximately 1100bp, covering coat protein region of the virus, was amplified using universal primers. The amplified product was T/A cloned and sequenced to its entirety. DNA sequence showed 99% nucleotide sequence identity to each of Cotton leaf curl Burewala virus ((CLCuBuV; Accession No HF549Begomoviruses are a serious threat to cotton production throughout the world. In Pakistan, enormous crop losses occur as a result of cotton leaf curl disease (CLCuD) caused by begomoviruses. Molecular characterization of begomoviruses has made possible the identification and analysis of begomoviruses prevalent in a host plant. Infected cotton leaf sample (C-59) was obtained from area around Khanewal during 2011. The total DNA was isolated from the infected sample by Cetyl trimethyl ammonium bromide (CTAB) method. An expected size band of approximately 1100bp, covering coat protein region of the virus, was amplified using universal primers. The amplified product was T/A cloned and sequenced to its entirety. DNA sequence showed 99% nucleotide sequence identity to each of Cotton leaf curl Burewala virus ((CLCuBuV; Accession No HF549184)) and Cotton leaf curl Kokhran virus (CLCuKV; Accession No AJ002449)). Since CLCuBuV is a recombinant of CLCuKV and Cotton leaf curl Multan virus and the coat protein region of CLCuBuV was derived from CLCuKV that is most probable reason that the available sequence showed identity with CLCuBuV as well as CLCuKV. A complete characterization of full length virus will determine whether isolate C-59 is CLCuBuV or CLCuKV. Literature indicates that there is no existence of CLCuKV within the region and CLCuBuV is dominating within Indo-Pak184)) and Cotton leaf curl Kokhran virus (CLCuKV; Accession No AJ002449)). Since CLCuBuV is a recombinant of CLCuKV and Cotton leaf curl Multan virus and the coat protein region of CLCuBuV was derived from CLCuKV that is most probable reason that the available sequence showed identity with CLCuBuV as well as CLCuKV. A complete characterization of full length virus will determine whether isolate C-59 is CLCuBuV or CLCuKV. Literature indicates that there is no existence of CLCuKV within the region and CLCuBuV is dominating within Indo-Pak


2007 ◽  
Vol 127 (1) ◽  
pp. 122-125 ◽  
Author(s):  
Ágnes Bukovinszki ◽  
Reinhard Götz ◽  
Elisabeth Johansen ◽  
Edgar Maiss ◽  
Ervin Balázs

Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1066-1066 ◽  
Author(s):  
H. Costa ◽  
J. A. Ventura ◽  
A. S. Jadão ◽  
J. A. M. Rezende ◽  
A. P. O. A. Mello

Watercress (Nasturtium officinale L.), a member of the family Brassicaceae, is consumed mainly as salad. Medicinal properties have also been attributed to this species. In Brazil, watercress is grown mainly by very small farmers. The crop is primarily seed propagated and growers can harvest several times per year in an established planting. Very few diseases have been reported in this crop worldwide. In Brazil, watercress infection by Cauliflower mosaic virus (CaMV) (3), Cucumber mosaic virus (CMV) (1), and an unidentified potyvirus (2) were previously reported. In January 2009, 80% of watercress plants, cv. Gigante Redondo, exhibiting severe mosaic, leaf size reduction, and plant stunting were observed in a crop in Marechal Floriano Municipality, State of Espírito Santo, Brazil. Preliminary leaf dip analysis by transmission electron microscopy revealed the presence of potyvirus-like particles. Sap from five infected plants reacted in plate-trapped antigen (PTA)-ELISA with polyclonal antiserum against Turnip mosaic virus (TuMV), but not with antiserum against CMV. Both antisera were produced in the Plant Virology Laboratory, ESALQ/USP. Mechanically inoculated watercress plants developed similar systemic mosaic symptoms. The virus was also transmitted to Nicotiana benthamiana, which exhibited severe mosaic and stunting. The presence of TuMV on these inoculated plants was confirmed by PTA-ELISA and reverse transcription (RT)-PCR. Total RNA extracted from infected and healthy watercress and infected N. benthamiana was analyzed by RT-PCR using specific pairs of primers flanking the coat protein gene of TuMV. Degenerated anti-sense (5′-t/caacccctt/gaacgcca/cagt/ca-3′) and sense (5′-gcaggtgaa/gacg/acttgat/ca/gc-3′) primers were designed after analysis to an alignment of the nucleotide sequences for five isolates of TuMV available in the GenBank (Accession Nos. NC_002509, D10927, EU680574, AB362513, and D88614). One fragment of 838 bp was amplified from samples in the infected plants, but not in the healthy controls. Two amplicons were purified and directly sequenced in both directions. Comparisons of the 731-bp consensus nucleotide sequence (Accession No. HM008961) to several other isolates of TuMV revealed 94 to 95% identity in the coat protein region. To our knowledge, this is the first report of TuMV in watercress in Brazil. Management of the disease should include propagation by seeds instead of vegetative parts of the plants and rouging of diseased plants to prevent mechanical transmission during successive harvestings. References: (1) A. J. Boari et al. Fitopatol. Bras. 25:438, 2000. (2) A. J. Boari et al. Fitopatol. Bras. 27:S200, 2002. (3) M. L. R. Z. C. Lima et al. Fitopatol. Bras. 9:403, 1984.


Virus Genes ◽  
1989 ◽  
Vol 2 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Diethard Mattanovich ◽  
Gottfried Himmler ◽  
Margit Laimer ◽  
Edgar Maiss ◽  
Ferdinand Regner ◽  
...  

Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
JM Rollinger ◽  
TM Steindl ◽  
K Anrain ◽  
EP Ellmerer ◽  
M Schmidtke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document