scholarly journals Carbon use efficiency and storage in terrestrial ecosystems

2013 ◽  
Vol 199 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Mark A. Bradford ◽  
Thomas W. Crowther
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi Chen ◽  
Guirui Yu

AbstractCarbon use efficiency (CUE), one of the most important eco-physiological parameters, represents the capacity of plants to transform carbon into new biomass. Understanding the variations and controls of CUE is crucial for regional carbon assessment. Here, we used 15-years of continuous remote sensing data to examine the variations of CUE across broad geographic and climatic gradients in China. The results showed that the vegetation CUE was averaged to 0.54 ± 0.11 with minor interannual variation. However, the CUE greatly varied with geographic gradients and ecosystem types. Forests have a lower CUE than grasslands and croplands. Evergreen needleleaf forests have a higher CUE than other forest types. Climate factors (mean annual temperature (MAT), precipitation (MAP) and the index of water availability (IWA)) dominantly regulated the spatial variations of CUE. The CUE exhibited a linear decrease with enhanced MAT and MAP and a parabolic response to the IWA. Furthermore, the responses of CUE to environmental change varied with individual ecosystem type. In contrast, precipitation exerted strong control on CUE in grassland, while in forest and cropland, the CUE was mainly controlled by the available water. This study identifies the variations and response of CUE to environmental drivers in China, which will be valuable for the regional assessment of carbon cycling dynamics under future climate change.


2019 ◽  
Author(s):  
Xiaolu Tang ◽  
Nuno Carvalhais ◽  
Catarina Moura ◽  
Bernhard Ahrens ◽  
Sujan Koirala ◽  
...  

2021 ◽  
Author(s):  
Xuehui Feng ◽  
Jie Hu ◽  
Yuanhe Yang ◽  
Leiyi Chen

<p>Elucidating the mechanisms underlying the changes in microbial physiology under anthropogenic nitrogen (N) input is of fundamental importance for understanding the carbon-N interaction under global environmental change. Carbon use efficiency (CUE), the ratio of microbial growth to assimilation, represents a critical microbial metabolic parameter that controls the fate of soil C. Despite the recognized importance of mineral protection as a driver of soil C cycling in terrestrial ecosystems, little is known on how mineral-organic association will modulate the response of microbial CUE to increasing N availability. Here, by combining a 6-year N‐manipulation experiment and <sup>18</sup>O isotope incubation, mineral analysis and a two-pool C decomposition model, we evaluate how N-induced modification in mineral protection affect the changes in microbial growth, respiration and CUE. Our results showed that microbial CUE increased under N enrichment due to the enhanced microbial growth and decreased respiration. Such changes in microbial physiology further led to a significant decrease in CO<sub>2</sub>-C release from the slow C pool under high N input. More importantly, the disruption in mineral-organic association induced by elevated root exudates is the foremost reason for the enhanced microbial growth and CUE under high N input. Taken together, these findings provide an empirical evidence for the linkage between soil mineral protection and microbial physiology, and highlight the need to consider the plant-mineralogy-microbial interactions in Earth system models to improve the prediction of soil C fate under global N deposition.</p>


1994 ◽  
Vol 128 (1) ◽  
pp. 115-122 ◽  
Author(s):  
P. B. TINKER ◽  
D. M. DURALL ◽  
M. D. JONES

Sign in / Sign up

Export Citation Format

Share Document