microbial physiology
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 1)

mSystems ◽  
2021 ◽  
Author(s):  
Firas S. Midani ◽  
James Collins ◽  
Robert A. Britton

Our current understanding of microbial physiology relies on the simple method of measuring microbial populations’ sizes over time and under different conditions. Many advances have increased the throughput of those assays and enabled the study of nonlab-adapted microbes under diverse conditions that widely affect their growth dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Björn Gutschmann ◽  
Martina C. E. Bock ◽  
Stefan Jahns ◽  
Peter Neubauer ◽  
Christopher J. Brigham ◽  
...  

AbstractProcess engineering of biotechnological productions can benefit greatly from comprehensive analysis of microbial physiology and metabolism. Ralstonia eutropha (syn. Cupriavidus necator) is one of the best studied organisms for the synthesis of biodegradable polyhydroxyalkanoate (PHA). A comprehensive metabolomic study during bioreactor cultivations with the wild-type (H16) and an engineered (Re2058/pCB113) R. eutropha strain for short- and or medium-chain-length PHA synthesis has been carried out. PHA production from plant oil was triggered through nitrogen limitation. Sample quenching allowed to conserve the metabolic states of the cells for subsequent untargeted metabolomic analysis, which consisted of GC–MS and LC–MS analysis. Multivariate data analysis resulted in identification of significant changes in concentrations of oxidative stress-related metabolites and a subsequent accumulation of antioxidative compounds. Moreover, metabolites involved in the de novo synthesis of GDP-l-fucose as well as the fucose salvage pathway were identified. The related formation of fucose-containing exopolysaccharides potentially supports the emulsion-based growth of R. eutropha on plant oils.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Valentina S. Artamonova

The article gives the main biographic information of the Doctor of Biological Sciences Iya Leonidovna Klevenskaya, who was the initiator and the head of the Laboratory of Soil Microbiology of the Institute of Soil Science and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences. She worked in academic science for 40 years, focusing her research on microbial physiology and ecology in soils of Siberia.


2021 ◽  
Author(s):  
Tessa Camenzind ◽  
Johannes Lehmann ◽  
Anika Lehmann ◽  
Carlos A. Aguilar-Trigueros ◽  
Matthias C. Rillig

<p>Our knowledge about the role of microbial organisms as drivers of soil biogeochemical cycles is mainly based on soil analyses, and the physiological information that exists for few microbial model organisms. In soil, measurements of process rates and element contents can be related to the apparent activity of the microbial community, though conclusions are often indirect - actual microbial physiology and diversity remains hidden. By contrast, analyses of microbial physiology under controlled conditions are hardly representative of the vast diversity of microorganisms in soil, and a transfer of these findings to complex soil systems is challenging. Thus, we argue that a better exchange among these ecological disciplines will lead to a valuable transfer of relevant questions, knowledge and improved understanding of the role of microbes in soil and its responses to environmental change. <br>Here, we provide examples of an evaluation of microbial parameters relevant in soil biogeochemical cycles, analysing traits in a collection of 31 saprobic fungi in response to varying substrate conditions. The large dataset allowed to test several assumptions and conclusions derived from soil system analyses exemplarily for soil fungi. Specifically, we (1) evaluated the optimum C:N:P (carbon:nitrogen:phosphorus) substrate ratio for fungal growth and activity, (2) assessed the responses in carbon-use efficiency and enzyme activity to N deficiency, (3) analyzed the relevance of C versus N supply for fungal growth and activity under varying substrate conditions and (4) tested the assumption of microbial stoichiometric homeostasis, that represents a basic principle in soil ecological stoichiometry. <br>Fungal responses to changes in N and C availability were partly consistent with expectations, e.g. regarding general nutrient demands, though as often discussed C availability appeared more relevant for growth especially in complex substrates. Enzymatic activity and respiration also positively correlated with N availability, resulting in decreased carbon-use efficiency at high N supply. These findings, for example, contradict certain conclusions in soil analyses, namely that N limitations will result in “N mining” (high enzymatic activity), while the excess of C causes “overflow respiration” and reduced CUE. Regarding fungal C:N:P ratios, those were only related to nutrient demands when growing in simple media, while in soil substrate such relations seem more complex. Contradicting the assumption of microbial homeostasis in soil, fungal individuals showed more flexible C:N:P ratios than expected, though the degree of flexibility varied among isolates. In general, the results also reveal a large trait variation among different isolates, with several traits showing a phylogenetic signal, indicating variations in microbial activity depending on community composition.<br>Finally, we want to raise and discuss several emerging questions: How relevant is a deeper understanding of microbial physiology to understand soil biogeochemical processes? How do we include the variability of traits in diverse soil communities – are average values informative, or can we proceed with useful categories? And how can methods in soil science and microbial ecology be merged best to allow fruitful knowledge transfer?</p>


2021 ◽  
Author(s):  
Alberto Canarini ◽  
Lucia Fuchslueger ◽  
Jörg Schnecker ◽  
Margarete Watzka ◽  
Erich M. Pötsch ◽  
...  

<p>The raise of atmospheric CO<sub>2</sub> concentrations, with consequent increase in global warming and the likelihood of severe droughts, is altering the terrestrial biogeochemical carbon (C) cycle, with potential feedback to climate change.  Microbial physiology, i.e. growth, turnover and carbon use efficiency, control soil carbon fluxes to the atmosphere. Thus, improving our ability to accurately quantify microbial physiology, and how it is affected by climate change, is essential. Recent advances in the field have allowed the quantification of community-level microbial growth and carbon use efficiency in dry conditions via an <sup>18</sup>O water vapor equilibration technique, allowing for the first time to evaluate microbial growth rates under drought conditions.</p><p>We modified the water vapor equilibration method using <sup>2</sup>H-labelled water to estimate microbial community growth via deuterium incorporation into fatty acids. First, we verified that a rapid equilibration of <sup>2</sup>H with soil water is possible. Then, we applied this approach to soil samples collected from a long-term climate change experiment (https://www.climgrass.at/) where warming, elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) and drought are manipulated in a full factorial combination. Samples were taken in the field during peak drought and one week after rewetting. We used a high-throughput method to extract phospho- and neutral- lipid fatty acids (PLFA and NLFA) and we measured <sup>2</sup>H enrichment in these compounds via GC-IRMS.</p><p>Our results show that within 48 h, <sup>2</sup>H in water vapor was in equilibrium with soil water and was detectable in microbial PLFA and NLFAs. We were able to quantify growth rates for different groups of microorganisms (Gram-positive, Gram-negative, Fungi and Actinobacteria) and calculate community level carbon use efficiency. We showed that a reduction of carbon use efficiency in the combined warming + eCO<sub>2</sub> treatment was caused by a reduced growth of fungi and overall higher respiration rates. During drought, all groups showed a reduction in growth rates, albeit the reduction was stronger in bacteria than in fungi. Moreover, fungi accumulated high amounts of <sup>2</sup>H into NLFAs, representing up to one third of the amount in PLFAs and indicating enhanced investment into storage compounds. This investment was still higher than in control plots two days after rewetting and returned to control levels within a week.</p><p>Our study demonstrates that climate change can have strong effects on microbial physiology, with group-specific responses to different climate change factors. Our approach has the benefit of using fatty acid biomarkers to improve resolution into community level growth responses to climate change. This allowed a quantification of group-specific growth rates and concomitantly a measurement of investment into reserve compounds.</p>


2021 ◽  
Author(s):  
Xuehui Feng ◽  
Jie Hu ◽  
Yuanhe Yang ◽  
Leiyi Chen

<p>Elucidating the mechanisms underlying the changes in microbial physiology under anthropogenic nitrogen (N) input is of fundamental importance for understanding the carbon-N interaction under global environmental change. Carbon use efficiency (CUE), the ratio of microbial growth to assimilation, represents a critical microbial metabolic parameter that controls the fate of soil C. Despite the recognized importance of mineral protection as a driver of soil C cycling in terrestrial ecosystems, little is known on how mineral-organic association will modulate the response of microbial CUE to increasing N availability. Here, by combining a 6-year N‐manipulation experiment and <sup>18</sup>O isotope incubation, mineral analysis and a two-pool C decomposition model, we evaluate how N-induced modification in mineral protection affect the changes in microbial growth, respiration and CUE. Our results showed that microbial CUE increased under N enrichment due to the enhanced microbial growth and decreased respiration. Such changes in microbial physiology further led to a significant decrease in CO<sub>2</sub>-C release from the slow C pool under high N input. More importantly, the disruption in mineral-organic association induced by elevated root exudates is the foremost reason for the enhanced microbial growth and CUE under high N input. Taken together, these findings provide an empirical evidence for the linkage between soil mineral protection and microbial physiology, and highlight the need to consider the plant-mineralogy-microbial interactions in Earth system models to improve the prediction of soil C fate under global N deposition.</p>


2021 ◽  
Vol 67 ◽  
pp. 42-48
Author(s):  
Paloma Garrido-Amador ◽  
Margarita Kniaziuk ◽  
Bram Vekeman ◽  
Boran Kartal

2021 ◽  
Vol 85 (1) ◽  
Author(s):  
Ryan K. Fritts ◽  
Alexandra L. McCully ◽  
James B. McKinlay

SUMMARY The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.


2021 ◽  
Vol 319 ◽  
pp. 124226
Author(s):  
Tianqi Zhang ◽  
Qidong Yin ◽  
Yunhong Shi ◽  
Guangxue Wu
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqin Wu ◽  
Sarah Spencer ◽  
Sara Gushgari-Doyle ◽  
Mon Oo Yee ◽  
Jana Voriskova ◽  
...  

Recovery and cultivation of diverse environmentally-relevant microorganisms from the terrestrial subsurface remain a challenge despite recent advances in modern molecular technology. Here, we applied complex carbon (C) sources, i.e., sediment dissolved organic matter (DOM) and bacterial cell lysate, to enrich groundwater microbial communities for 30 days. As comparisons, we also included enrichments amended with simple C sources including glucose, acetate, benzoate, oleic acid, cellulose, and mixed vitamins. Our results demonstrate that complex C is far more effective in enriching diverse and distinct microorganisms from groundwater than simple C. Simple C enrichments yield significantly lower biodiversity, and are dominated by few phyla (e.g., Proteobacteria and Bacteroidetes), while microcosms enriched with complex C demonstrate significantly higher biodiversity including phyla that are poorly represented in published culture collections (e.g., Verrucomicrobia, Planctomycetes, and Armatimonadetes). Subsequent isolation from complex C enrichments yielded 228 bacterial isolates representing five phyla, 17 orders, and 56 distinct species, including candidate novel, rarely cultivated, and undescribed organisms. Results from this study will substantially advance cultivation and isolation strategies for recovering diverse and novel subsurface microorganisms. Obtaining axenic representatives of “once-unculturable” microorganisms will enhance our understanding of microbial physiology and function in different biogeochemical niches of terrestrial subsurface ecosystems.


Sign in / Sign up

Export Citation Format

Share Document