Conservation and divergence of gene expression plasticity followingc. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca × Picea engelmannii)

2014 ◽  
Vol 203 (2) ◽  
pp. 578-591 ◽  
Author(s):  
Sam Yeaman ◽  
Kathryn A. Hodgins ◽  
Haktan Suren ◽  
Kristin A. Nurkowski ◽  
Loren H. Rieseberg ◽  
...  
2010 ◽  
Vol 86 (1) ◽  
pp. 118-129 ◽  
Author(s):  
M J Waterhouse ◽  
E. C. Wallich ◽  
N. M. Daintith ◽  
H. M. Armleder

Mature lodgepole pine (Pinus contorta) forests were harvested using group selection (GS) (0.02-ha openings) and irregular group shelterwood (IGS) (0.05-ha openings) systems to maintain arboreal and terrestrial lichens in the winter range of northern woodland caribou (Rangifer tarandus caribou). Ten years after planting, lodgepole pine showed excellent survival, but were smaller in the partial cut openings compared to the clearcuts. Pine grew less in the Sub-Boreal Pine–Spruce biogeoclimatic subzone (SBPSxc) than in the Montane Spruce subzone (MSxv), and trees were smaller in the GS versus IGS treatment within the MSxv subzone. Interior spruce (Picea glauca × engelmannii) grew best in the MSxv and partial cut treatments, but was significantly affected by summer frost in the clearcuts. In an operational-scale Adaptive Management trial, openings were enlarged to 0.15 ha, and both pine and spruce showed excellent survival, minimal frost damage, and 10-year size similar to clearcut conditions. This study suggests that lodgepole pine and interior spruce can be successfully regenerated in partial cut openings with acceptable growth in gaps of 0.15 ha. Key words: caribou, group selection, interior spruce, irregular group shelterwood, light level, lodgepole pine, Montane Spruce zone, partial harvest, soil moisture, soil temperature, Sub-Boreal Pine Spruce zone, summer frost


1995 ◽  
Vol 71 (6) ◽  
pp. 739-742 ◽  
Author(s):  
David G. Simpson ◽  
Alan Vyse

Douglas-fir [Pseudotsuga menziesii var glauca (Beissn.) Franco], interior spruce [Picea glauca Moench (Voss), Picea engelmannii (Parry) and their naturally occurring hybrids] and lodge-pole pine (Pinus contorta Dougl.) seedlings were planted on several forest sites in south central British Columbia. At planting, root growth potential (number of newly elongated roots longer than 10 mm per seedling) was determined. Trees were assessed for survival and height for at least five years. Survival of Douglas-fir and growth of all three species was affected by planting site, probably reflecting moisture and growing season temperature differences among sites. High (> 70%) survival, but not total height or mean annual relative growth rate was associated with root growth potential levels greater than 10 new roots per seedling in interior spruce and lodgepole pine. Survival and growth of Douglas-fir were not related to root growth potential. Fertilization of interior spruce seedlings at planting decreased survival 18% over seven growing seasons, and did not affect growth of surviving seedlings. Key words: reforestation, root growth potential, seedling quality, Douglas-fir, interior spruce, lodgepole pine, field performance


2005 ◽  
Vol 81 (3) ◽  
pp. 409-417 ◽  
Author(s):  
N M Daintith ◽  
M J Waterhouse ◽  
H M Armleder

Group selection and irregular group shelterwood silvicultural systems were applied to older lodgepole pine (Pinus contorta var. latifolia) forests in west-central British Columbia to determine their potential for maintaining northern caribou (Rangifer tarandus caribou) habitat. These silvicultural systems created small openings 15–30 m wide,which were planted with lodgepole pine and interior spruce (Picea glauca x Picea engelmannii) seedlings. Fifth-year survival and growth results indicate that either species could adequately regenerate the small openings created by partial cutting. Pine survival in the partial cuts (93–95%) was comparable to the clearcuts (94%). Pine height and height growth did not vary significantly between treatments; however, diameters were significantly larger in the clearcuts. After five years across all treatments, pine seedlings were 38–42 cm tall with diameters ranging from 7–11 mm. Spruce survival varied considerably between the clearcuts (35–98%) but was more consistent in the partial cuts (66–97%). Total height and height growth differed significantly among treatments, with the shortest spruce seedlings found in the clearcuts. Seedling diameter did not differ among treatments. Average fifth-year height ranged from 31 cm to 44 cm and diameters ranged from 7 mm to 9 mm. To maintain caribou habitat, species should be planted in similar proportions to the pre-harvest stand composition to avoid potential impacts on the terrestrial and arboreal lichens, which are important caribou forage. Key words: caribou, lodgepole pine, partial cutting, planted seedlings, interior spruce, group selection, irregular group shelterwood


1991 ◽  
Vol 6 (3) ◽  
pp. 64-67 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Wayne L. Martin

Abstract The incidence of meadow vole (Microtus pennsylvanicus) and brown lemming (Lemmus sibiricus) feeding damage to young plantations of lodgepole pine (Pinus contorta var. latifolia) and interior spruce (Picea glauca × Picea engelmannii) was studied in west-central British Columbia. Fifty-eight plantations were surveyed for seedling survival and stocking, and an additional 21 older plantations of lodgepole pine were surveyed for tree damage. Average survival of pine (47.7%) was significantly lower than that of spruce (56.0%). Because of mortality from vole feeding, 24 of the 58 plantations were not satisfactorily restocked. Planted trees were attacked significantly more than natural regeneration. Severely attacked plantations occurred in the spruce-subalpine fir (Abies lasiocarpa) forest type at elevations > 800 m on N to NE aspects. Susceptible plantations generally had mechanical or no site preparation with complex post-harvest debris and limited vegetation cover. West. J. Appl. For. 6(3):64-67.


2004 ◽  
Vol 34 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Gregory A O'Neill ◽  
Sally N Aitken

A new breeding zone delineation scheme identifies for a given number of zones the zone-boundary placement that minimizes regional maladaptation in breeding programs. First, an adaptive map is created by using conventional genetic test data. Then, the large array of predicted adaptive values is subjected to cluster analysis, which assigns each grid cell of the region to one of a predetermined number of clusters (breeding zones) such that the sum of the squared distances between each cell's adaptive value and its cluster mean is minimized. This approach minimizes the average adaptive distance between the origin of a breeding program's selected trees and planting locations throughout the region of focus. The procedure is illustrated by the use of adaptive values of 69 interior spruce (Picea engelmannii Parry ex Engelm. × Picea glauca (Moench) Voss) open-pollinated families (sources) from southeast British Columbia, Canada. Adaptive values of each 1.5 km × 1.5 km grid cell in the 80 000-km2 region were predicted using a geneco logical model (R2 = 0.64), and the values were subjected to cluster analysis to identify breeding zone boundaries that were then mapped using a geographic information system. Regardless of the number of zones created, a regional maladaptation index was consistently smaller when zones were devised with area-based cluster (ABC) analysis than when zones were created by dividing the region into bands of equal elevational or adaptive-value widths. Application of the ABC procedure should assist in identifying the optimum breeding-zone alignment for a given number of zones.


1999 ◽  
Vol 29 (12) ◽  
pp. 1989-1992 ◽  
Author(s):  
Gordon D Nigh ◽  
Bobby A Love

The best estimates of site index, an indicator of site productivity, are obtained from site trees. Undamaged site trees should be sampled to obtain unbiased estimates of site index. Two juvenile height growth modelling projects provided us with sufficient data to assess our ability to select undamaged lodgepole pine (Pinus contorta var. latifolia Dougl.) and white spruce (Picea glauca (Moench) Voss) site trees. The sample trees were split open to measure height growth from the terminal bud scars. Splitting the stems also revealed damage that was not visible from the outside of the tree. Over 50% of the lodgepole pine trees and 75% of the white spruce trees had damage, which was much higher than expected. Possible causes of damage are frost and insects. The damage does not significantly reduce the height of the spruce trees, but there is evidence that the heights of the lodgepole pine trees are reduced.


1981 ◽  
Vol 113 (4) ◽  
pp. 337-340 ◽  
Author(s):  
W. W. Nijholt ◽  
L. H. McMullen ◽  
L. Safranyik

AbstractPine oil, a by-product of sulphate wood pulping, protected pheromone-baited, living Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl.), and spruce (Picea glauca (Moench) Voss - P. engelmannii Parry hybrids) from attack by Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.), mountain pine beetle (D. ponderosa Hopk.), and spruce beetle (D. rufipennis (Kirby)), respectively. Pine oil also protected surrounding trees and reduced attack incidence on Douglas-fir, lodgepole pine, and spruce within at least a 10 m radius. α-Terpineol, one of the constituents of the pine oil mixture, was less effective.


Author(s):  
Mengmeng Lu ◽  
Nicolas Feau ◽  
Dragana Obreht Vidakovic ◽  
Nicholas Ukrainetz ◽  
Barbara Wong ◽  
...  

Many conifers have distributions that span wide ranges in both biotic and abiotic conditions, but the basis of response to biotic stress has received much less attention than response to abiotic stress. In this study, we investigated the gene expression response of lodgepole pine (Pinus contorta) to attack by the fungal pathogen Dothistroma septosporum, which causes Dothistroma needle blight (DNB), a disease that has caused severe climate-related outbreaks in northwestern British Columbia. We inoculated tolerant and susceptible pines with two D. septosporum isolates and analyzed the differentially expressed genes, differential exon usage, and co-expressed gene modules using RNA-seq data. We found a rapid and strong transcriptomic response in tolerant lodgepole pine samples inoculated with one D. septosporum isolate, and a late and weak response in susceptible samples inoculated with another isolate. We mapped 43 of the DEG- or gene-module-identified genes to the reference plant-pathogen interaction pathway deposited in KEGG database. These genes are present in PAMP-triggered and effector-triggered immunity pathways. Genes comprising pathways and gene modules had signatures of strong selective constraint, while the highly expressed genes in tolerant samples appear to have been favored by selection to counterattack the pathogen. We identified candidate resistance genes that may respond to D. septosporum effectors. Taken together, our results show that gene expression response to D. septosporum infection in lodgepole pine varies both among tree genotypes and pathogen strains, and involves both known candidate genes and a number of genes with previously unknown functions.


Sign in / Sign up

Export Citation Format

Share Document