Seed inoculations with entomopathogenic fungi affect aphid populations coinciding with modulation of plant secondary metabolite profiles across plant families

2020 ◽  
Vol 229 (3) ◽  
pp. 1715-1727 ◽  
Author(s):  
Shumaila Rasool ◽  
Nanna H. Vidkjær ◽  
Kourosh Hooshmand ◽  
Birgit Jensen ◽  
Inge S. Fomsgaard ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Eric R. Scott ◽  
Xin Li ◽  
Ji-Peng Wei ◽  
Nicole Kfoury ◽  
Joshua Morimoto ◽  
...  

2018 ◽  
Vol 66 (7) ◽  
pp. 1678-1692 ◽  
Author(s):  
Mandy Heinze ◽  
Franziska S. Hanschen ◽  
Melanie Wiesner-Reinhold ◽  
Susanne Baldermann ◽  
Jan Gräfe ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 108
Author(s):  
Xiyan Wang ◽  
Thomas Isbrandt ◽  
Mikael Lenz Strube ◽  
Sara Skøtt Paulsen ◽  
Maike Wennekers Nielsen ◽  
...  

Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Adam Kostelnik ◽  
Miroslav Pohanka

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are two enzymes sensitive to various chemical compounds having ability to bind to crucial parts of these enzymes. Boldine is a natural alkaloid and it was mentioned in some older works that it can inhibit some kinds of AChE. We reinvestigated this effect on AChE and also on BChE using acetyl (butyryl) thiocholine and Ellman’s reagents as standard substances for spectrophotometric assay. We found out IC50 of AChE equal to 372 μmol/l and a similar level to BChE, 321 μmol/l. We conclude our experiment by a finding that boldine is cholinesterase inhibitor; however we report significantly weaker inhibition than that suggested in literature. Likewise, we tried to investigate the mechanism of inhibition and completed it with in silico study. Potential toxic effect on cholinesterases in real conditions is also discussed.


2019 ◽  
Vol 7 (6) ◽  
pp. 166 ◽  
Author(s):  
Ignacio Sottorff ◽  
Jutta Wiese ◽  
Matthias Lipfert ◽  
Nils Preußke ◽  
Frank D. Sönnichsen ◽  
...  

As Streptomyces have shown an outstanding capacity for drug production, different campaigns in geographically distant locations currently aim to isolate new antibiotic producers. However, many of these newly isolated Streptomyces strains are classified as identical to already described species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology are possible, we compared two Streptomyces strains with identical 16S rRNA gene sequences but geographically distant origins. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp. SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM 40236T isolated from Russian garden soil. Compared traits included phylogenetic relatedness based on 16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and secondary metabolite profiles. Both Streptomyces strains shared several common features, such as morphology and core secondary metabolite production. They revealed differences in pigmentation and in the production of accessory secondary metabolites which appear to be strain-specific. In conclusion, despite identical 16S rRNA classification Streptomyces strains can present different secondary metabolite profiles and may well be valuable for consideration in processes for drug discovery.


Author(s):  
Glenn R. Iason ◽  
Ben D. Moore ◽  
Jack J. Lennon ◽  
Jenni A. Stockan ◽  
Graham H. R. Osler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document