scholarly journals Temperature modulates virus‐induced transcriptional gene silencing via secondary small RNAs

2021 ◽  
Author(s):  
Yue Fei ◽  
Douglas E. Pyott ◽  
Attila Molnar
2021 ◽  
Author(s):  
Ganna Reshetnyak ◽  
Jonathan M. Jacobs ◽  
Florence Auguy ◽  
Coline Sciallano ◽  
Lisa Claude ◽  
...  

ABSTRACTNon-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences often encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and some xisRNA loci coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.


2011 ◽  
Vol 21 (19) ◽  
pp. 1678-1683 ◽  
Author(s):  
Charles W. Melnyk ◽  
Attila Molnar ◽  
Andrew Bassett ◽  
David C. Baulcombe

2013 ◽  
Vol 2 ◽  
pp. e104 ◽  
Author(s):  
Amanda Ackley ◽  
Alexandra Lenox ◽  
Kenneth Stapleton ◽  
Stuart Knowling ◽  
Tim Lu ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
S. V. Ramesh ◽  
Sneha Yogindran ◽  
Prabu Gnanasekaran ◽  
Supriya Chakraborty ◽  
Stephan Winter ◽  
...  

Virus-derived siRNAs (vsiRNAs) generated by the host RNA silencing mechanism are effectors of plant’s defense response and act by targeting the viral RNA and DNA in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) pathways, respectively. Contrarily, viral suppressors of RNA silencing (VSRs) compromise the host RNA silencing pathways and also cause disease-associated symptoms. In this backdrop, reports describing the modulation of plant gene(s) expression by vsiRNAs via sequence complementarity between viral small RNAs (sRNAs) and host mRNAs have emerged. In some cases, silencing of host mRNAs by vsiRNAs has been implicated to cause characteristic symptoms of the viral diseases. Similarly, viroid infection results in generation of sRNAs, originating from viroid genomic RNAs, that potentially target host mRNAs causing typical disease-associated symptoms. Pathogen-derived sRNAs have been demonstrated to have the propensity to target wide range of genes including host defense-related genes, genes involved in flowering and reproductive pathways. Recent evidence indicates that vsiRNAs inhibit host RNA silencing to promote viral infection by acting as decoy sRNAs. Nevertheless, it remains unclear if the silencing of host transcripts by viral genome-derived sRNAs are inadvertent effects due to fortuitous pairing between vsiRNA and host mRNA or the result of genuine counter-defense strategy employed by viruses to enhance its survival inside the plant cell. In this review, we analyze the instances of such cross reaction between pathogen-derived vsiRNAs and host mRNAs and discuss the molecular insights regarding the process of pathogenesis.


2004 ◽  
Vol 82 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Tony Nolan ◽  
Carlo Cogoni

Small RNA molecules such as siRNAs and miRNAs represent a new class of molecules that have been implicated in a wide range of diverse gene silencing phenomena. It is now becoming clear that these two similar molecules share several common features in both their biogenesis and their mechanism of action. Thus, the siRNA and miRNA pathways may have evolved from a common ancestral mechanism that has diverged to play important roles in developmental regulation, genomic organisation, and cellular defence against foreign nucleic acids.Key words: miRNA, siRNA, post-transcriptional gene silencing, RNAi, heterochromatin.


RNA Silencing ◽  
2005 ◽  
pp. 061-082
Author(s):  
M. Florian Mette ◽  
Werner Aufsatz ◽  
Tatsuo Kanno ◽  
Lucia Daxinger ◽  
Philipp Rovina ◽  
...  

2019 ◽  
Vol 73 (5) ◽  
pp. 362-367 ◽  
Author(s):  
Jens A. Schröder ◽  
Pauline E. Jullien

Small RNAs gene regulation was first discovered about 20 years ago. It represents a conserve gene regulation mechanism across eukaryotes and is associated to key regulatory processes. In plants, small RNAs tightly regulate development, but also maintain genome stability and protect the plant against pathogens. Small RNA gene regulation in plants can be divided in two canonical pathways: Post-transcriptional Gene Silencing (PTGS) that results in transcript degradation and/or translational inhibition or Transcriptional Gene Silencing (TGS) that results in DNA methylation. In this review, we will focus on the model plant Arabidopsis thaliana. We will provide a brief overview of the molecular mechanisms involved in canonical small RNA pathways as well as introducing more atypical pathways recently discovered.


Sign in / Sign up

Export Citation Format

Share Document