scholarly journals The Diversity of Plant Small RNAs Silencing Mechanisms

2019 ◽  
Vol 73 (5) ◽  
pp. 362-367 ◽  
Author(s):  
Jens A. Schröder ◽  
Pauline E. Jullien

Small RNAs gene regulation was first discovered about 20 years ago. It represents a conserve gene regulation mechanism across eukaryotes and is associated to key regulatory processes. In plants, small RNAs tightly regulate development, but also maintain genome stability and protect the plant against pathogens. Small RNA gene regulation in plants can be divided in two canonical pathways: Post-transcriptional Gene Silencing (PTGS) that results in transcript degradation and/or translational inhibition or Transcriptional Gene Silencing (TGS) that results in DNA methylation. In this review, we will focus on the model plant Arabidopsis thaliana. We will provide a brief overview of the molecular mechanisms involved in canonical small RNA pathways as well as introducing more atypical pathways recently discovered.

2021 ◽  
Author(s):  
Ganna Reshetnyak ◽  
Jonathan M. Jacobs ◽  
Florence Auguy ◽  
Coline Sciallano ◽  
Lisa Claude ◽  
...  

ABSTRACTNon-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences often encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and some xisRNA loci coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.


2021 ◽  
Vol 11 ◽  
Author(s):  
S. V. Ramesh ◽  
Sneha Yogindran ◽  
Prabu Gnanasekaran ◽  
Supriya Chakraborty ◽  
Stephan Winter ◽  
...  

Virus-derived siRNAs (vsiRNAs) generated by the host RNA silencing mechanism are effectors of plant’s defense response and act by targeting the viral RNA and DNA in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) pathways, respectively. Contrarily, viral suppressors of RNA silencing (VSRs) compromise the host RNA silencing pathways and also cause disease-associated symptoms. In this backdrop, reports describing the modulation of plant gene(s) expression by vsiRNAs via sequence complementarity between viral small RNAs (sRNAs) and host mRNAs have emerged. In some cases, silencing of host mRNAs by vsiRNAs has been implicated to cause characteristic symptoms of the viral diseases. Similarly, viroid infection results in generation of sRNAs, originating from viroid genomic RNAs, that potentially target host mRNAs causing typical disease-associated symptoms. Pathogen-derived sRNAs have been demonstrated to have the propensity to target wide range of genes including host defense-related genes, genes involved in flowering and reproductive pathways. Recent evidence indicates that vsiRNAs inhibit host RNA silencing to promote viral infection by acting as decoy sRNAs. Nevertheless, it remains unclear if the silencing of host transcripts by viral genome-derived sRNAs are inadvertent effects due to fortuitous pairing between vsiRNA and host mRNA or the result of genuine counter-defense strategy employed by viruses to enhance its survival inside the plant cell. In this review, we analyze the instances of such cross reaction between pathogen-derived vsiRNAs and host mRNAs and discuss the molecular insights regarding the process of pathogenesis.


2020 ◽  
Vol 64 (6) ◽  
pp. 919-930 ◽  
Author(s):  
Huijuan Tan ◽  
Bosheng Li ◽  
Hongwei Guo

Abstract In plants, post-transcriptional gene silencing (PTGS) tightly regulates development, maintains genome stability and protects plant against foreign genes. PTGS can be triggered by virus infection, transgene, and endogenous transcript, thus commonly serves as an RNA-based immune mechanism. Accordingly, based on the initiating factors, PTGS can be divided into viral-PTGS, transgene-PTGS, and endo-gene-PTGS. Unlike the intensely expressed invading transgenes and viral genes that frequently undergo PTGS, most endogenous genes do not trigger PTGS, except for a few that can produce endogenous small RNAs (sRNAs), including microRNA (miRNA) and small interfering RNA (siRNA). Different lengths of miRNA and siRNA, mainly 21-, 22- or 24-nucleotides (nt) exert diverse functions, ranging from target mRNA degradation, translational inhibition, or DNA methylation and chromatin modifications. The abundant 21-nt miRNA or siRNA, processed by RNase-III enzyme DICER-LIKE 1 (DCL1) and DCL4, respectively, have been well studied in the PTGS pathways. By contrast, the scarceness of endogenous 22-nt sRNAs that are primarily processed by DCL2 limits their research, although a few encouraging studies have been reported recently. Therefore, we review here our current understanding of diverse PTGS pathways triggered by a variety of sRNAs and summarize the distinct features of the 22-nt sRNA mediated PTGS.


2004 ◽  
Vol 82 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Tony Nolan ◽  
Carlo Cogoni

Small RNA molecules such as siRNAs and miRNAs represent a new class of molecules that have been implicated in a wide range of diverse gene silencing phenomena. It is now becoming clear that these two similar molecules share several common features in both their biogenesis and their mechanism of action. Thus, the siRNA and miRNA pathways may have evolved from a common ancestral mechanism that has diverged to play important roles in developmental regulation, genomic organisation, and cellular defence against foreign nucleic acids.Key words: miRNA, siRNA, post-transcriptional gene silencing, RNAi, heterochromatin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lishuang Wang ◽  
Peijie Tian ◽  
Xiuling Yang ◽  
Xueping Zhou ◽  
Songbai Zhang ◽  
...  

Pepper vein yellows virus (PeVYV) is a newly recognized Polerovirus extracted from Chinese pepper. The symptoms of PeVYV-infested pepper plants comprise intervein yellow staining, leaf curl formation and other malformations, and leaf internodal shrinkage, but the roles of the viral proteins remain undetermined. The P0 protein of the genus Polerovirus has established post-transcriptional gene silencing (PTGS) activity. This investigation focused on the PeVYV-encoded P0 protein and assessed its potential virulence capacity, PTGS activity, and tendencies to localize in the nucleus. This study revealed that P0 influenced the pathogenic properties of a specific heterologous potato virus X. In addition, P0 proteins impaired local gene silencing, although they did not regulate generalized gene silencing within Nicotiana benthamiana 16c plants. Furthermore, P0 proteins localized mainly in the nucleus, particularly in the nucleolus. P0 deletion mutagenesis demonstrated that the F-box motif (56–72 amino acids, AAs) of P0 was essential for symptom determination, inhibition of PTGS, and subcellular localization. Mutation analysis of the F-box motif of P0 protein indicated that AA 57 of the P0 protein was a pivotal site in symptom development and that AA 56 of the P0 protein was indispensable for inhibiting PTGS and subcellular localization. The outcomes obtained here suggest that further studies should be conducted on the molecular mechanisms of amino acids of the F-box domain of P0 protein in the interaction of PeVYV with plants.


2021 ◽  
Author(s):  
Mark A. A. Minow ◽  
Viktoriya Coneva ◽  
Victoria Lesy ◽  
Max Misyura ◽  
Joseph Colasanti

AbstractIn plants, small RNA (sRNA) can regulate gene expression via post transcriptional gene silencing (PTGS) or through RNA-directed DNA methylation (RdDM) leading to transcriptional gene silencing (TGS). sRNA is mobile throughout the plant, with movement occurring short distances from cell-to-cell as well as long distances through the vasculature via phloem trafficking. The range of long-distance sRNA mediated signaling from the vasculature to the shoot apical meristem (SAM) is not clear. To investigate this, two independent transgenic approaches were used to examine trafficking of phloem-expressed sRNA to the SAM in Arabidopsis thaliana. First, the phloem companion-cell specific promoter SUC2 was used to drive expression of an inverted repeat complementary to FLOWERING LOCUS D (FD), a flowering time regulator expressed exclusively in the SAM. In a separate experiment, the SUC2 promoter was used to express an artificial microRNA (aMiR) designed to target a synthetic CLAVATA3 (CLV3) target in the SAM stem cells. Both systems provide evidence of a phloem-to-SAM sRNA communication axis connecting distal regions of the plant to the stem cells of the SAM, which ultimately gives rise to all shoot tissues, including gametes. Thus, phloem-to-SAM sRNA movement defines an important link between sRNA expressed in distal regions of the plant and the growing shoot. Importantly, phloem-to-SAM sRNA trafficking may allow somatic sRNA to direct SAM RdDM, fixing transient sRNA expression events into stable epigenetic changes.


2016 ◽  
Author(s):  
Alper Akay ◽  
Tomas Di Domenico ◽  
Kin M. Suen ◽  
Amena Nabih ◽  
Guillermo E. Parada ◽  
...  

SUMMARYSmall RNAs (sRNAs) play an ancient role in genome defence against transposable elements. In animals, plants and fungi small RNAs guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. In animals the link between small RNA pathways and the transcriptional machinery remains unclear. Here we show that the Caenorhabditis elegans germline Argonaute HRDE-1 physically interacts with the conserved RNA helicase Aquarius/EMB-4. We demonstrate that the Aquarius/EMB-4 helicase activity is required to initiate small RNA-induced co-transcriptional gene silencing. HRDE-1 and Aquarius/EMB-4 are required to silence the transcription of overlapping sets of transposable elements. Surprisingly, removal of introns from a small RNA pathway target abolishes the requirement for Aquarius/EMB-4, but not HRDE-1, for gene silencing. We conclude that the Aquarius/EMB-4 helicase activity allows HRDE-1/sRNA complexes to efficiently engage nascent RNA transcripts - in competition with the general RNA processing machinery. We postulate that Aquarius/EMB-4 facilitates the surveillance of the nascent transcriptome to detect and silence transposable elements through small RNA pathways.


RNA ◽  
2014 ◽  
Vol 20 (12) ◽  
pp. 1987-1999 ◽  
Author(s):  
Tadeusz Wroblewski ◽  
Marta Matvienko ◽  
Urszula Piskurewicz ◽  
Huaqin Xu ◽  
Belinda Martineau ◽  
...  

2018 ◽  
Author(s):  
Paulina Martinez Palacios ◽  
Marie-Pierre Jacquemot ◽  
Marion Tapie ◽  
Agnès Rousselet ◽  
Mamoudou Diop ◽  
...  

AbstractAllopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neo-allopolyploids to form and adapt. Nevertheless, how neo-allopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small non-coding RNAs (sRNAs) in mediating the transcriptional response of neo-allopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate post-transcriptional gene silencing (PTGS) by mRNA cleavage whereas 24-nt sRNAs repress transcription (transcriptional gene silencing, TGS) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized B. napus allotetraploids surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target non-coding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a PTGS-to-TGS shift at the first stages of the neo-allopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various non-coding elements and stress-related genes, thus ensuring genome stability during the first steps of neo-allopolyploid formation.


Sign in / Sign up

Export Citation Format

Share Document