Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyper‐diverse lineage of mushroom‐forming fungi

2021 ◽  
Author(s):  
Brian Looney ◽  
Shingo Miyauchi ◽  
Emmanuelle Morin ◽  
Elodie Drula ◽  
Pierre Emmanuel Courty ◽  
...  
2021 ◽  
Author(s):  
Gitta Szabó ◽  
Frederik Schulz ◽  
Alejandro Manzano-Marín ◽  
Elena Rebecca Toenshoff ◽  
Matthias Horn

AbstractAdelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/Adelgestardus species complex containing betaproteobacterial (“Candidatus Vallotia tarda”) and gammaproteobacterial (“Candidatus Profftia tarda”) symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other’s role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection, and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 93
Author(s):  
Jessica Dittmer ◽  
Thierry Lusseau ◽  
Xavier Foissac ◽  
Franco Faoro

The genus Arsenophonus represents one of the most widespread clades of insect endosymbionts, including reproductive manipulators and bacteriocyte-associated primary endosymbionts. Two strains belonging to the Arsenophonus clade have been identified as insect-vectored plant pathogens of strawberry and sugar beet. The bacteria accumulate in the phloem of infected plants, ultimately causing leaf yellows and necrosis. These symbionts therefore represent excellent model systems to investigate the evolutionary transition from a purely insect-associated endosymbiont towards an insect-vectored phytopathogen. Using quantitative PCR and transmission electron microscopy, we demonstrate that ‘Candidatus Phlomobacter fragariae’, bacterial symbiont of the planthopper Cixius wagneri and the causative agent of Strawberry Marginal Chlorosis disease, can be transmitted from an infected strawberry plant to multiple daughter plants through stolons. Stolons are horizontally growing stems enabling the nutrient provisioning of daughter plants during their early growth phase. Our results show that Phlomobacter was abundant in the phloem sieve elements of stolons and was efficiently transmitted to daughter plants, which rapidly developed disease symptoms. From an evolutionary perspective, Phlomobacter is, therefore, not only able to survive within the plant after transmission by the insect vector, but can even be transmitted to new plant generations, independently from its ancestral insect host.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


2018 ◽  
Vol 443 (2) ◽  
pp. 188-202 ◽  
Author(s):  
Simpla Mahato ◽  
Jing Nie ◽  
David C. Plachetzki ◽  
Andrew C. Zelhof

2015 ◽  
Author(s):  
Arunas L Radzvilavicius ◽  
Neil W Blackstone

The complex eukaryotic cell is a result of an ancient endosymbiosis and one of the major evolutionary transitions. The timing of key eukaryotic innovations relative to the acquisition of mitochondria remains subject to considerable debate, yet the evolutionary process itself might constrain the order of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediation were based on the pathways inherited from prokaryotic symbionts and led to metabolic homeostasis in the eukaryotic cell, while later mechanisms (e.g., mitochondrial gene transfer) contributed to the expansion of the eukaryotic genome. Perhaps the greatest opportunity for conflict arose with the emergence of sex involving whole-cell fusion. While early evolution of cell fusion may have affected symbiont acquisition, sex together with the competitive symbiont behaviour would have destabilised the emerging higher-level unit. Cytoplasmic mixing, on the other hand, would have been beneficial for selfish endosymbionts, capable of using their own metabolism to manipulate the life history of the host. Given the results of our mathematical modelling, we argue that sex represents a rather late proto- eukaryotic innovation, allowing for the growth of the chimeric nucleus and contributing to the successful completion of the evolutionary transition.


2020 ◽  
Author(s):  
Gitta Szabó ◽  
Frederik Schulz ◽  
Alejandro Manzano-Marín ◽  
Elena Rebecca Toenshoff ◽  
Matthias Horn

ABSTRACTAdelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/tardus species complex containing betaproteobacterial (‘ Candidatus Vallotia tarda’) and gammaproteobacterial (‘Candidatus Profftia tarda’) symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other’s role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.


2019 ◽  
Author(s):  
Katrin Hammerschmidt ◽  
Giddy Landan ◽  
Fernando Domingues Kümmel Tria ◽  
Jaime Alcorta ◽  
Tal Dagan

AbstractThe transition from unicellular to multicellular organisms is one of the most significant events in the history of life. Key to this process is the emergence of Darwinian individuality at the higher level: groups must become single entities capable of reproduction for selection to shape their evolution. Evolutionary transitions in individuality are characterized by cooperation between the lower level entities and by division of labor. Theory suggests that division of labor may drive the transition to multicellularity by eliminating the trade-off between two incompatible processes that cannot be performed simultaneously in one cell. Here we examine the evolution of the most ancient multicellular transition known today, that of cyanobacteria, where we reconstruct the sequence of ecological and phenotypic trait evolution. Our results show that the prime driver of multicellularity in cyanobacteria was the expansion in metabolic capacity offered by nitrogen fixation, which was accompanied by the emergence of the filamentous morphology and succeeded by a reproductive life cycle. This was followed by the progression of multicellularity into higher complexity in the form of differentiated cells and patterned multicellularity.Significance StatementThe emergence of multicellularity is a major evolutionary transition. The oldest transition, that of cyanobacteria, happened more than 3 to 3.5 billion years ago. We find N2 fixation to be the prime driver of multicellularity in cyanobacteria. This innovation faced the challenge of incompatible metabolic processes since the N2 fixing enzyme (nitrogenase) is sensitive to oxygen, which is abundantly found in cyanobacteria cells performing photosynthesis. At the same time, N2-fixation conferred an adaptive benefit to the filamentous morphology as cells could divide their labour into performing either N2-fixation or photosynthesis. This was followed by the culmination of complex multicellularity in the form of differentiated cells and patterned multicellularity.


2020 ◽  
Author(s):  
Alexander Hooft van Huysduynen ◽  
Steven Janssens ◽  
Vincent Merckx ◽  
Rutger Vos ◽  
Luis Valente ◽  
...  

ABSTRACTAimInsular woodiness, referring to the evolutionary transition from herbaceousness towards woodiness on islands, has arisen at least 38 times on the Canary Islands. Distribution patterns and physiological experiments have suggested a link between insular woodiness and increased drought stress resistance in current-day species, but we do not know in which palaeoclimatic conditions these insular woody lineages originated. Therefore, we estimated the timing of colonisation events and origin of woodiness of multiple Canary Island lineages and reviewed the palaeoclimate based on literature.LocationCanary Islands (Spain).Taxon37 lineages, including 24 insular woody and 13 non-insular woody (i.e. herbaceous, ancestrally woody, and derived woody).MethodsTo enable a simultaneous dating analysis for all 37 lineages, two chloroplast markers (matK and rbcL) for 135 Canary Island species and 103 closely related continental relatives were sequenced and aligned to an existing matK-rbcL dataset including ca 24,000 species that was calibrated with 42 fossils from outside the Canaries. After constraining the species to the family level, 200 RAxML runs were performed and dated with TreePL.ResultsWoodiness in 80-90% of the insular woody lineages originated within the last 7 Myr, coinciding with the onset of major aridification events nearby the Canaries (start of north African desertification, followed by Messinian salinity crisis); in ca 55-65% of the insular woody lineages studied, woodiness developed within the last 3.2 Myr during which Mediterranean seasonality (yearly summer droughts) became established on the Canaries, followed by dry Pleistocene glacial fluctuations.Main conclusionsAlthough details of the initial colonisation and settlement of many island plant lineages remain elusive, our results are consistent with palaeodrought as a potential driver for woodiness in most of the insular woody Canary Island lineages studied.


Sign in / Sign up

Export Citation Format

Share Document