scholarly journals Many roads to success: different combinations of life‐history traits provide accurate germination timing in seasonally dry environments

Oikos ◽  
2021 ◽  
Author(s):  
Diego Fernando Escobar Escobar ◽  
Rafael Rubio de Casas ◽  
Leonor Patricia Cerdeira Morellato
Botany ◽  
2020 ◽  
Vol 98 (10) ◽  
pp. 563-573
Author(s):  
Nasr H. Gomaa

Annual plants in arid regions germinate at different times within a growing season, from early in the season to late, and this may affect post-germination traits. For this study, I tested the effect of germination timing on post-germination life-history traits, including progeny seed germination in the desert annual Erodium laciniatum var. pulverulentum (Cav.) Boiss. Traits of November- and February-germinated individuals were studied in a field survey carried out in northwestern Saudi Arabia, and the germination of freshly matured and after-ripened seeds from both early- and late-germinated plants was assessed. Overall, E. laciniatum showed significant phenotypic plasticity in life-history traits arising from different germination times. Density, survivorship and reproductive success of early-germinated plants were all significantly greater than for those that germinated later. Late-germinated plants flowered earlier, bolted at smaller size and allocated more biomass to reproduction than did early-germinated individuals. Delayed germination shortened both flowering period and life span. Seeds produced by late-germinated plants had greater germination percentage than did seeds from early-germinated plants.


2014 ◽  
Vol 24 (3) ◽  
pp. 207-215 ◽  
Author(s):  
Chunhui Zhang ◽  
Kun Liu ◽  
Wei Qi ◽  
Zhen Ma ◽  
Guozhen Du

AbstractGermination timing is a key transition of life history. It not only links subsequent life-history traits, such as plant height and flowering time, but also provides a link to the previous generation through the influence of the maternal environment. Environmental factors may mediate these key links, and consequences of this process may influence species regeneration and dispersal. However, little is known about how environmental factors mediate these key links. Here, germination timing under high (natural light) and low light treatments was estimated for 476 angiosperm species of the eastern Tibetan Plateau grasslands. Furthermore, we used standard (std) and phylogenetic (phy) comparative methods to test if germination timing was associated with plant height, flowering time and maternal habitats under both light treatments. Germination timing was positively correlated with plant height only in low light in std-methods. Germination timing was associated with onset of flowering in both light treatments in std-methods, but only in low light when using phy-methods. Germination timing was positively correlated with elevation only in low light when using both comparative methods. Germination timing was correlated with water in maternal habitat only in high light when using both comparative methods. Germination timing was associated with light in maternal habitat in both light treatments in std-methods, but only in high light when using phy-methods. In summary, light-dependent associations of germination timing with subsequent life-history traits and maternal habitats may influence the probability of plant species life-cycle completion and influence distribution and dispersal of plant species in natural plant communities.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2019 ◽  
Vol 144 (4) ◽  
pp. 389-411 ◽  
Author(s):  
Ramsés Djidjou‐Demasse ◽  
Gbenga J. Abiodun ◽  
Abiodun M. Adeola ◽  
Joel O. Botai

Sign in / Sign up

Export Citation Format

Share Document