Germination time influences post-germination life-history traits and progeny seed germination patterns in the desert annual Erodium laciniatum (Geraniaceae)

Botany ◽  
2020 ◽  
Vol 98 (10) ◽  
pp. 563-573
Author(s):  
Nasr H. Gomaa

Annual plants in arid regions germinate at different times within a growing season, from early in the season to late, and this may affect post-germination traits. For this study, I tested the effect of germination timing on post-germination life-history traits, including progeny seed germination in the desert annual Erodium laciniatum var. pulverulentum (Cav.) Boiss. Traits of November- and February-germinated individuals were studied in a field survey carried out in northwestern Saudi Arabia, and the germination of freshly matured and after-ripened seeds from both early- and late-germinated plants was assessed. Overall, E. laciniatum showed significant phenotypic plasticity in life-history traits arising from different germination times. Density, survivorship and reproductive success of early-germinated plants were all significantly greater than for those that germinated later. Late-germinated plants flowered earlier, bolted at smaller size and allocated more biomass to reproduction than did early-germinated individuals. Delayed germination shortened both flowering period and life span. Seeds produced by late-germinated plants had greater germination percentage than did seeds from early-germinated plants.

Author(s):  
Alexander Ray Rayiappan ◽  
Zulaikha Sarobo ◽  
Muhammad Arshad Javed

Capsicum annum is commercially cultivated due to its nutritional and pharmaceutical values. It is particularly important in Malaysia due to its abundant use in daily life food. Although it is warm seasonal plant, its productivity is not high in tropical environment. High seed germination is the prerequisite for good seedling establishment. Present study is conducted to study the varietal response for germination traits in diverse capsicum germplasm.  Five germination traits were focused e.g.  Final germination percentage (FGP), speed of germination (SG), initiation of germination (IG), days to 50% germination (R50) and peak period of germination (GP). Seeds of each variety were kept in triplicate at room temperature using Yoshida medium coupled with photoperiod of 14 hours for two weeks. Mean values for FGP (81%), SG (rate=2), IG (9th day) and R50 (10th day) and GP (12th day) were observed in 93 varieties. Analysis of variance (ANOVA) showed significant difference for all germination traits, reflecting that present germplasm is diverse for germination traits. These findings would be useful to improve the germination traits in capsicum hybridization programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Jiang ◽  
Chaowen She ◽  
Changyan Tian ◽  
Mohsin Tanveer ◽  
Lei Wang

On degraded land in arid regions, cultivation of Apocynum species can provide significant environmental benefits by preventing soil erosion and desertification. Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed in salt-barren lands in the northwestern region of China, are traditionally used to produce natural fiber and herbal tea. Direct sowing of both species may encounter various abiotic stresses such as drought and salinity. However, these effects on germination remain largely unknown, especially for seeds with different storage periods. The aim of this study was to evaluate the effects of storage period, light condition, temperature regime, drought, and salinity on germination performances of both species. Germination experiment was carried out in November 2017. There were four replicates for each treatment, and each petri dish contained 25 seeds. The results indicated that prolongation of storage period significantly decreased the germination percentage and velocity, especially under abiotic stresses. Light did not affect seed germination of A. venetum and A. pictum under any conditions. Seeds had better germination performance at 10/25 and 15/30°C than those of seeds incubated at any other temperatures. With the increase of polyethylene glycol (PEG) and salinity concentrations, seed germination for both species gradually decreased, especially for seeds stored for 2 years. Low PEG (0–20%) and salinity concentration (0–200 mM) did not significantly affect germination percentage of freshly matured seeds. However, long-time storage significantly decreased drought and salinity tolerance in A. venetum and A. pictum during germination stage. For saline soils in arid and semi-arid regions, freshly matured seeds or 1-year-stored seeds of both Apocynum species are recommended to be sown by using drip-irrigation in spring.


2017 ◽  
Vol 27 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Anne Cochrane

AbstractSeed germination is vital for persistence of many plant species, and is linked to local environmental conditions. Small increases in temperature during this critical life history transition may threaten species by altering germination timing and success. Such changes in turn may influence population dynamics, community composition and the geographic distributions of species. In this investigation, a bi-directional temperature gradient plate was used to profile thermal constraints for germination in 26 common, threatened and geographically restrictedEucalyptusspecies (Myrtaceae) from southern Western Australia. These observed data were used to populate models to predict optimum germination responses (mean time to germination, germination timing and success) under current (1950–2000 averages) and future (2070 high greenhouse gas emission climate scenario) mean monthly minimum and maximum temperatures. Many species demonstrated wide physiological tolerance for high germination temperatures and an ability to germinate outside current and forecast future autumn–winter wet season temperatures, suggesting that climatic distribution is a poor proxy for thermal tolerance forEucalyptusseed germination. Germination for some species is predicted to decline under forecast conditions, but the majority will maintain or improve germination particularly during the cooler winter months of the year. Although thermal tolerance may benefit persistence of manyEucalyptusspecies in southern Western Australia as warming becomes more severe, large rainfall declines are also forecast which may prove more detrimental to plant survival. Nonetheless, this framework has the potential to identify seed resilience to heat stress in an early life history phase and hence species vulnerability to one characteristic of forecast environmental change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Zhang ◽  
Mingfang Hu ◽  
Hongyuan Ma ◽  
Li Jiang ◽  
Zhenyong Zhao ◽  
...  

The period between seed germination and seedling establishment is one of the most vulnerable stages in the life cycle of annuals in the saline environments. Although germination characteristics of Suaeda salsa seeds have been reported, the comparative germination patterns of dimorphic seeds and seedling growth to different abiotic stresses remain poorly understood. In this study, germination responses of dimorphic seeds to light and temperature were compared. Meanwhile, responses of dimorphic seeds and thereafter seedlings of S. salsa to different concentrations of NaCl and Na2SO4 were also tested. The results showed that the light did not significantly affect germination percentage of brown seeds, but significantly promoted germination of black seeds. Brown seeds could reach high germination percentage over a wide temperature range, however, germination of black seeds gradually increased with the increase of temperature. Brown seeds had higher germination percentage and velocity than black seeds under the same salt conditions. However, black seeds had higher recovery germination than brown seeds when transferred to deionized water. Young seedlings had lower salt tolerance than germinating seeds. At the same concentrations, Na2SO4 had stronger inhibitory effect on seed germination and seedling growth than NaCl. This study comprehensively compared germination traits of dimorphic seeds and seedling growth of S. salsa, and then developed a conceptual model to explain their adaptation to harsh saline environment.


Oikos ◽  
2021 ◽  
Author(s):  
Diego Fernando Escobar Escobar ◽  
Rafael Rubio de Casas ◽  
Leonor Patricia Cerdeira Morellato

2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Liu ◽  
Yang Liu ◽  
Zhilong Zhang ◽  
Shiting Zhang ◽  
Carol C. Baskin ◽  
...  

Seed germination requirements may determine the kinds of habitat in which plants can survive. We tested the hypothesis that nitrogen (N) addition can change seed germination trait-environmental filter interactions and ultimately redistribute seed germination traits in alpine meadows. We determined the role of N addition on germination trait selection in an alpine meadow after N addition by combining a 3-year N addition experiment in an alpine meadow and laboratory germination experiments. At the species level, germination percentage, germination rate (speed) and breadth of temperature niche for germination (BTN) were positively related to survival of a species in the fertilized community. In addition, community-weighted means of germination percentage, germination rate, germination response to alternating temperature and BTN increased. However, germination response to wet-cold storage (cold stratification) and functional richness of germination traits was lower in alpine meadows with high-nitrogen addition than in those with no, low and medium N addition. Thus, N addition had a significant influence on environmental filter-germination trait interactions and generated a different set of germination traits in the alpine meadow. Further, the effect of N addition on germination trait selection by environmental filters was amount-dependent. Low and medium levels of N addition had less effect on redistribution of germination traits than the high level.


Horticulturae ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 31 ◽  
Author(s):  
Thomas E. Marler

The role of seed imbibition and light during germination are not known for the critically endangered Serianthes nelsonii Merr. Scarified seeds were pre-soaked in gibberellic acid (GA3) up to 300 mg/L and nitrate solutions of 3000 mg/L to determine if germination was influenced by these treatments. Scarified and imbibed seeds were incubated in high red:far red and low red:far red light to determine the influence of light quality on germination traits. The GA3 and nitrate treatments did not influence germination percentage or timing, but did increase the height of newly emerged seedlings. Moreover, GA3 extended the longevity of cotyledons and shortened the window of time that seedlings required to resume height growth. These growth responses were not sustained, and all seedlings reached heights of 30 cm at a similar number of weeks. The light treatments did not influence any of the germination response traits. The results indicate that imbibing seeds with chemical solutions and providing light in a range of light quality treatments exerted a minimal influence on S. nelsonii seed germination behaviors. Imbibing seeds with water and germinating in darkness is sufficient for achieving the germination of this endangered tree species.


2020 ◽  
Vol 48 (3) ◽  
pp. 355-365
Author(s):  
Aiping Chen ◽  
Yuxiang Wang ◽  
Xiaoqing Sui ◽  
Guili Jin ◽  
Kun Wang ◽  
...  

Global warming has led to changes in rainfall patterns in many regions and it has an increasing impact on the availability of water for plants, especially in the arid and semi-arid regions. Seed germination is the most critical stage in the plant life cycle, it determines whether or not the population can successfully establish. Here, we assessed the seed germination characteristics of Seriphidium transiliense under six water potentials and four temperature regimes. S. transiliense seeds could germinate from 5/15°C to 20/30°C, while the optimum temperature regime was 10/20°C. As water potential decreased, the germination percentage, germination index, germination energy, vigour index, plumule length and radicle length increased and then decreased, while mean time to germinate decreased and then increased. The optimum condition for S. transiliense seed germination was -0.2 MPa at 10/20°C. Some seeds that failed to germinate under drought conditions were transferred to distilled water and recovered germination ability.


2018 ◽  
Vol 28 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Ana Salazar ◽  
Joyce Maschinski ◽  
Jennifer Possley ◽  
Katherine Heineman

AbstractGermination studies at the community level are crucial for understanding and predicting changes in species distribution patterns, particularly in endangered plant communities. We investigated the effects of dry (11–25% relative humidity) and freezing (–18°C) storage conditions, phylogeny and plant life-history traits (life-form, life-span, microhabitat and seed dispersal mode) on seed germination percentage (GP) and time to reach 50% germination (T50) of 53 species native to pine rocklands in South Florida, USA, a globally critically imperiled ecosystem. Most species we studied (68%) withstood dry and freezing storage conditions and thus ex situ seed banking can assist their long-term conservation. Bayesian mixed effect models revealed that there was a significant phylogenetic signal in GP and T50 across species. Life-history covariates did not explain significant additional variation in GP in models controlling for the phylogenetic relationships among species. T50 differed among species with contrasting dispersal modes, with animal-dispersed seeds exhibiting more delayed germination than wind-dispersed or unassisted seeds. Differential germination responses across species with different seed dispersal modes have implications for potential shifts in species composition under disturbance and climate change. Thus, knowledge of species-relatedness and some life-history traits such as seed dispersal mode can significantly assist management decisions regarding seed storage and conservation of subtropical endangered plants.


Sign in / Sign up

Export Citation Format

Share Document