scholarly journals A new proteid salamander (Urodela, Proteidae) from the middle Miocene of Hambach (Germany) and implications for the evolution of the family

Palaeontology ◽  
2021 ◽  
Author(s):  
Loredana Macaluso ◽  
Andrea Villa ◽  
Thomas Mörs
Keyword(s):  
1978 ◽  
Vol 115 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Minoo Hojjatzadeh

SummaryTwenty-three species of the Family Discoasteraceae Vekshina, 1959 recovered from 18 samples of the Blue Clay at Fort Chambray, Gozo, and 31 samples from Fomm-Ir-Rih Bay, Malta, have been studied under light and scanning electron microscopes. Fourteen Middle Miocene species are reviewed, their stratigraphical ranges and importance as marker species discussed. Nine species are described as new. On the basis of the discoaster species present, a Middle Miocene age (NN.6 Discoaster exilis Zone – NN.7 Discoaster kugleri Zone) for the Blue Clay in Malta and Gozo is suggested.


1988 ◽  
Vol 62 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Villarroel A. Carlos ◽  
Larry G. Marshall

A new argyrolagoid marsupial, Hondalagus altiplanensis n. gen., n. sp., from the middle Miocene (Santacrucian–Friasian) age locality of Quebrada Honda in southernmost Bolivia represents the smallest and most specialized member of the family Argyrolagidae known. The lower molars are hypselodont and lack vertical grooves labially and lingually, and M4 is greatly reduced relative to M3. In overall size and structure, H. altiplanensis compares best with Microtragulus catamarcensis (Kraglievich, 1931) from rocks of late Miocene (Huayquerian) age in northwest Argentina. Hondalagus altiplanensis demonstrates that the adaptive radiation of argyrolagoids was much greater than previously envisioned, and that generic differentiation of known taxa occurred no later than early–middle Miocene time in South America.


Zootaxa ◽  
2010 ◽  
Vol 2552 (1) ◽  
pp. 55 ◽  
Author(s):  
ANALÍA M. FORASIEPI ◽  
ALFREDO A. CARLINI

A new genus and species, Patagosmilus goini, of the family Thylacosmilidae (Mammalia, Metatheria, Sparassodonta) is described here. The new taxon is based on a single specimen collected from the west margin of the Río Chico, in Río Negro Province, Argentina, from the middle Miocene Colloncuran SALMA. Until now, two formally recognized species were encompassed in the family Thylacosmilidae: Thylacosmilus atrox, from the late Miocene-late Pliocene Huayquerian to Chapadmalalan SALMAof Argentina and probably Uruguay; and Anachlysictis gracilis, from the middle Miocene Laventan SALMA of Colombia. Recognition of the Patagonian taxon, Patagosmilus, provides new anatomical data, likely to be included in future phylogenetic analyses. The overall morphology of Patagosmilus suggests that it has a more generalized anatomy than Thylacosmilus. The dental morphology suggests the new Patagonian taxon was probably closer to Thylacosmilus than Anachlysictis. Saber-tooth thylacosmilids have several autapomorphic features in the skull that differentiate them from other sparassodonts, including the delayed replacement or non-replacement of the deciduous last premolar.


2006 ◽  
Vol 37 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Ole Heie

AbstractThree new species of fossil aphids are described from Canadian amber, age the Upper Cretaceous, viz. Longiradius foottitti n. gen. et n. sp., which has been referred to Palaeoaphididae, Canaphis albertensis n. gen. et n. sp. and Aphidinius constrictus n. gen. et n. sp., which have been impossible to place in any known family. Furthermore more material of Mesozoicaphis canadensis Heie, belonging to the extinct family Mesozoicaphididae, are described. At least 32 specimens of Mesozoicaphis spp. occur in the material, often more than two in the same piece of amber, making it highly probable that their host plant was the resin-producing gymnosperm. Eight new species of fossil aphids with 16 specimens are described from clay shales in Nevada, age the Middle Miocene, viz. Palaeogreenidea rittae n. gen. et n. sp. belonging to the family Greenideidae, Similidrepan pulawskii n. gen. et n. sp., Nevaphis nevadensis n. gen. et n. sp. and Americaphis longipes n. gen. et n. sp., which have placed in Drepanosiphidae, Lachnarius miocaenicus n. gen. et n. sp., which belongs to Lachnidae, and Eriosaphis leei gen. et n. sp., Eriosomaphis jesperi n. gen. et n. sp. and Eriosomaphis occidentalis n. sp., which have been placed in Eriosomatidae (= Pemphigidae).


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5800 ◽  
Author(s):  
Pavel Gol'din

Background Family Cetotheriidae sensu stricto and several closely related taxa comprise the Cetotherioidea and represent a lineage of Neogene baleen whales that includes the smallest edentulous baleen whales in Earth history. Most of known cetotheriids came from the Late Miocene to Quaternary, and the earliest records from the latest Middle Miocene. The Paratethys region shows a great diversity of Middle to Late Miocene cetotheriids. That includes nominative taxon of the family, Cetotherium rathkii, and this suggests that the earliest cetotheriids may have lived in that region. Materials and methods Here, Ciuciulea davidi, a new genus and species from the Middle Miocene of southeastern Europe, is described as the chronologically earliest and earliest diverging member of Cetotheriidae. Also, a new specimen of Otradnocetus, a basal Cetotherioidea sensu Gol’din & Steeman, 2015 is identified from the Late Miocene deposits of Caucasus and compared with Otradnocetus virodovi from the Middle Miocene of the same region. Results and discussion Ciuciulea davidi is a dwarf whale displaying primitive traits: posterior ends of facial bones forming a single transverse line, a narrow occipital shield, and a relatively long interparietal region. Meanwhile, it shares some cetotheriid apomorphies: posteriorly telescoped wedge-shaped facial bones and an ovoid tympanic bulla with shallow lateral and medial furrows, a short anterior lobe and a short sigmoid process. Phylogenetic analysis suggests that Parietobalaena and Otradnocetus are branches diverging before the clade Cetotheriidae + Neobalaenidae. This is confirmed by the stepwise evolution of the anatomy of the squamosal, mandible, and ear bones across these groups. The re-described juvenile specimen of Otradnocetus differs from O. virodovi in the more primitive anatomy of the mandible and the autapomorphic anatomy of the humerus. Records of the earliest cetotheriids and related taxa in the Paratethys support the idea that this could be the region where Cetotheriidae evolved before their worldwide dispersal and radiation.


2020 ◽  
Vol 76 (2) ◽  
pp. 325-337
Author(s):  
Martin Pickford ◽  
Tanju Kaya ◽  
Erhan Tarhan ◽  
Derya Erylmaz ◽  
Serdar Mayda

Turkey is known for the wealth of fossil suids found in deposits of middle Miocene, late Miocene and Plio-Pleistocene levels but material of this family from early Miocene and Palaeogene deposits is rare in the country, one of the few published occurrences being from Şemsettin (Kumartaş Formation, MN 4, Çankiri-Çorum Basin). For this reason, it is interesting to record the presence of small suid remains in the Soma Formation at Sabuncubeli (Manisa, SW Anatolia) in deposits correlated to MN 3 (early Miocene) and thus the earliest known Turkish members of the family. The upper and lower teeth are herein attributed to a new genus and species (Prolistriodon smyrnensis) of Listriodontinae because, in a nascent way, they show a suite of derived morphological features such as upper central incisors with apical sulci, and upper molars with lingual precrista, found in listriodonts but not in Kubanochoerinae, Palaeochoerinae, Tetracondontinae, Hyotheriinae, Namachoerinae, Cainochoerinae or Suinae.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244661 ◽  
Author(s):  
Bastien Mennecart ◽  
Grégoire Métais ◽  
Loïc Costeur ◽  
Léonard Ginsburg ◽  
Gertrud E. Rössner

Amphimoschus is an extinct Eurasian ruminant genus, mostly recorded in Europe, without a close living relative and, hence, an unknown systematic position. This genus is known from around 50 localities from the late early to the middle Miocene. Two species were described during 180 years, but since their first description during the late 19th century and early 20th century, hardly any detailed taxonomic work has been done on the genus. Over the years, extensive collecting and excavating activities have enriched collections with more and more complete material of this still rare and enigmatic animal. Most interestingly, a number of skull remains have been unearthed and are promising in terms of providing phylogenetic information. In the present paper, we describe cranial material, the bony labyrinth, the dentition through 780 teeth and five skulls from different ontogenetic stages. We cannot find a clear morphometric distinction between the supposedly smaller and older species Amphimoschus artenensis and the supposedly younger and larger species A. ponteleviensis. Accordingly, we have no reason to retain the two species and propose, following the principle of priority (ICZN chapter 6 article 23), that only A. ponteleviensis Bourgeois, 1873 is valid. Our studies on the ontogenetic variation of Amphimoschus does reveal that the sagittal crest may increase in size and a supraorbital ridge may appear with age. Despite the abundant material, the family affiliation is still uncertain.


1993 ◽  
Vol 67 (S29) ◽  
pp. 1-76 ◽  
Author(s):  
Thomas M. Bown ◽  
John G. Fleagle

The family Palaeothentidae contains some of the dentally more specialized of the small-bodied marsupials of South America and was a clade almost equivalent with the Abderitidae in having been the most abundant caenolestoids. They were unquestionably the most diverse, containing two subfamilies, nine genera, and 19 species, with a distribution ranging from Colombia to Tierra del Fuego. The best and most continuous record of the Palaeothentidae is from Patagonian Argentina where eight genera and 17 species are recognized. There, the Palaeothentidae ranged in age from the Deseadan (later Oligocene) through the late Santacrucian (middle Miocene—the Santacrucian record lasting from about 19.4 m.y. to considerably less than 16.05 m.y. before the present). The family appears to have survived longer in Colombia. The palaeothentine Palaeothentes boliviensis (Bolivia) and the incertae sedis genus and species Hondathentes cazador (Colombia) are the only taxa restricted to an extra-Argentine distribution.Two palaeothentid subfamilies are recognized. The subfamily Acdestinae is new and is erected to accommodate four genera and five species of herbivorous to frugivorous palaeothentids known from the Deseadan through the middle–late Santacrucian. Three of those genera are new (Acdestoides, Acdestodon, and Trelewthentes), as are three acdestine species placed in the genera Acdestodon, Trelewthentes, and Acdestis. The largely faunivorous Palaeothentinae includes four genera and 13 species; the genera Propalaeothentes and Carlothentes are new and new species are described for the genera Propalaeothentes (2) and Palaeothentes (3). Carlothentes is named for Ameghino's Deseadan species Epanorthus chubutensis, and Ameghino's genus Pilchenia is resurrected to accommodate Deseadan P. lucina. New species include: Acdestodon bonapartei, Trelewthentes rothi, Acdestis lemairei, Palaeothentes marshalli, P. migueli, P. pascuali, and Propalaeothentes hatcheri.The Palaeothentinae contains more generalized palaeothentid species than does the Acdestinae, but also includes some very specialized forms. The most generalized known palaeothentid is the Colombian Hondathentes cazador. Both the Acdestinae and Palaeothentinae have large- and small-bodied species; Palaeothentes aratae was the largest palaeothentid (about 550 g), and P. pascuali n. sp. the smallest (about 50 g). The oldest known members of both subfamilies consist of five of the six largest palaeothentids.The evolutionary history of the Palaeothentidae is complicated by thick sequences containing no fossils, several lacunae in sequences that yield fossils, and a continent-wide distribution of localities. By far the densest and most continuous record of the family exists in the coastal Santa Cruz Formation of Patagonian Argentina. Three major clades exist within the Palaeothentidae: 1) the incertae sedis species Hondathentes cazador; 2) the Acdestinae; and 3) the Palaeothentinae (including the new genus Propalaeothentes). The evolution of dental characters in these clades is documented with the aid of 719 new specimens (about 80% of the hypodigm of the family), most of which (about 90% of the new specimens) have precise stratigraphic data.Biostratigraphic study of the new samples was assisted by a new technique of temporal analysis of paleosols and by radiometric age determinations, the latter indicating that the upper part of the Pinturas Formation (16.6 Ma) is older than the lower part of the Santa Cruz Formation (16.4 Ma) and that the top of the marine Monte León Formation (Grupo Patagonica) is older than either (19.4 Ma).Fifty-two gnathic and dental characters were used to identify the taxonomy and to reconstruct the phylogeny of the Palaeothentidae. Analysis of sequencing of appearances of derived characters documents rampant convergences at all taxonomic levels and considerable phenotypic plasticity (variable percent representation of different mutable character morphs) in the organization of the palaeothentid dentition. Certain highly generalized character states survive for the duration of the family in some lineages, whereas others are phenotypically lost for a time and then reappear as a minor percentage of character variability. In general, replacement faunas of palaeothentids were morphologically more generalized than their antecedent forms. The high rate of character mutability and the survival and reappearance of generalized dental characters in the Palaeothentidae were probably related to massive events of pyroclastic deposition that periodically caused at least local extinctions of small mammal populations throughout the duration of the Patagonian middle Tertiary. Dental character regression indicates that palaeothentids arose prior to the Deseadan from a relatively large-bodied marsupial having generalized tribosphenic molars with more or less bunodont cusps; probably an unknown member of the Didelphidae.


Sign in / Sign up

Export Citation Format

Share Document