scholarly journals The R 2 R 3 MYB transcription factor P av MYB 10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry ( P runus avium L .)

2016 ◽  
Vol 14 (11) ◽  
pp. 2120-2133 ◽  
Author(s):  
Wanmei Jin ◽  
Hua Wang ◽  
Maofu Li ◽  
Jing Wang ◽  
Yuan Yang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kaijie Zheng ◽  
Xutong Wang ◽  
Yating Wang ◽  
Shucai Wang

Abstract Background Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. Results Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. Conclusion These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


2022 ◽  
Vol 293 ◽  
pp. 110674
Author(s):  
Yiguang Wang ◽  
Li-Jie Zhou ◽  
Yuxi Wang ◽  
Zhiqiang Geng ◽  
Baoqing Ding ◽  
...  

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 92 ◽  
Author(s):  
Ziguo Zhu ◽  
Guirong Li ◽  
Li Liu ◽  
Qingtian Zhang ◽  
Zhen Han ◽  
...  

In grapevine, the MYB transcription factors play an important role in the flavonoid pathway. Here, a R2R3-MYB transcription factor, VvMYBC2L2, isolated from Vitis vinifera cultivar Yatomi Rose, may be involved in anthocyanin biosynthesis as a transcriptional repressor. VvMYBC2L2 was shown to be a nuclear protein. The gene was shown to be strongly expressed in root, flower and seed tissue, but weakly expressed during the fruit development in grapevine. Overexpressing the VvMYBC2L2 gene in tobacco resulted in a very marked decrease in petal anthocyanin concentration. Expression analysis of flavonoid biosynthesis structural genes revealed that chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR) and UDP glucose flavonoid 3-O-glucosyl transferase (UFGT) were strongly down-regulated in the VvMYBC2L2-overexpressed tobacco. In addition, transcription of the regulatory genes AN1a and AN1b was completely suppressed in transgenic plants. These results suggested that VvMYBC2L2 plays a role as a negative regulator of anthocyanin biosynthesis.


2019 ◽  
Vol 61 (2) ◽  
pp. 318-330 ◽  
Author(s):  
Ding Huang ◽  
Zhouzhou Tang ◽  
Jialing Fu ◽  
Yue Yuan ◽  
Xiuxin Deng ◽  
...  

Abstract Anthocyanins are preferentially accumulated in certain tissues of particular species of citrus. A R2R3-MYB transcription factor (named Ruby1) has been well documented as an activator of citrus anthocyanin biosynthesis. In this study, we characterized CsMYB3, a transcriptional repressor that regulates anthocyanin biosynthesis in citrus. CsMYB3 was expressed in anthocyanin-pigmented tissues, and the expression was closely associated with that of Ruby1, which is a key anthocyanin activator. Overexpression of CsMYB3 in Arabidopsis resulted in a decrease in anthocyanins under nitrogen stress. Overexpression of CsMYB3 in the background of CsRuby1-overexpressing strawberry and Arabidopsis reduced the anthocyanin accumulation level. Transient promoter activation assays revealed that CsMYB3 could repress the activation capacity of the complex formed by CsRuby1/CsbHLH1 for the anthocyanin biosynthetic genes. Moreover, CsMYB3 could be transcriptionally activated by CsRuby1 via promoter binding, thus forming an ‘activator-and-repressor’ loop to regulate anthocyanin biosynthesis in citrus. This study shows that CsMYB3 plays a repressor role in the regulation of anthocyanin biosynthesis and proposes an ‘activator-and-repressor’ loop model constituted by CsRuby1 and CsMYB3 in the regulation of anthocyanin biosynthesis in citrus.


2021 ◽  
Vol 22 (20) ◽  
pp. 10927
Author(s):  
Da-Hye Kim ◽  
Jundae Lee ◽  
JuHee Rhee ◽  
Jong-Yeol Lee ◽  
Sun-Hyung Lim

The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.


Sign in / Sign up

Export Citation Format

Share Document