A single gene transfer of gibberellin biosynthesis gene cluster increases gibberellin production in a Fusarium fujikuroi strain with gibberellin low producibility

2020 ◽  
Vol 69 (5) ◽  
pp. 901-910 ◽  
Author(s):  
WanXue Bao ◽  
Takuya Nagasaka ◽  
Shin Inagaki ◽  
Sho Tatebayashi ◽  
Iori Imazaki ◽  
...  
2002 ◽  
Vol 267 (5) ◽  
pp. 593-602 ◽  
Author(s):  
P. Linnemannstöns ◽  
M. Prado ◽  
R. Fernández-Martín ◽  
B. Tudzynski ◽  
J. Avalos

2003 ◽  
Vol 278 (31) ◽  
pp. 28635-28643 ◽  
Author(s):  
Bettina Tudzynski ◽  
Martina Mihlan ◽  
María Cecilia Rojas ◽  
Pia Linnemannstöns ◽  
Paul Gaskin ◽  
...  

2008 ◽  
Vol 74 (24) ◽  
pp. 7790-7801 ◽  
Author(s):  
Christiane Bömke ◽  
Maria C. Rojas ◽  
Peter Hedden ◽  
Bettina Tudzynski

ABSTRACT Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to Fusarium fujikuroi (G. fujikuroi MP-C) and Fusarium konzum (MP-I), although most members of the G. fujikuroi species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in F. verticillioides (MP-A) is due to the loss of a majority of the GA gene cluster as found in F. fujikuroi. The remaining part of the cluster consists of the full-length F. verticillioides des gene (Fvdes), encoding the GA4 desaturase, and the coding region of FvP450-4, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of F. fujikuroi. The GA production capacity of F. verticillioides was restored by transforming a cosmid with the entire GA gene cluster from F. fujikuroi, indicating the existence of an active regulation system in F. verticillioides. Furthermore, the GA4 desaturase gene des from F. verticillioides encodes an active enzyme which was able to restore the GA production in a corresponding des deletion mutant of F. fujikuroi.


2010 ◽  
Vol 55 (3) ◽  
pp. 974-982 ◽  
Author(s):  
Qiulin Wu ◽  
Jingdan Liang ◽  
Shuangjun Lin ◽  
Xiufen Zhou ◽  
Linquan Bai ◽  
...  

ABSTRACTThe pyrrole polyether antibiotic calcimycin (A23187) is a rare ionophore that is specific for divalent cations. It is widely used as a biochemical and pharmacological tool because of its multiple, unique biological effects. Here we report on the cloning, sequencing, and mutational analysis of the 64-kb biosynthetic gene cluster fromStreptomyces chartreusisNRRL 3882. Gene replacements confirmed the identity of the gene cluster, andin silicoanalysis of the DNA sequence revealed 27 potential genes, including 3 genes for the biosynthesis of the α-ketopyrrole moiety, 5 genes that encode modular type I polyketide synthases for the biosynthesis of the spiroketal ring, 4 genes for the biosynthesis of 3-hydroxyanthranilic acid, anN-methyltransferase tailoring gene, a resistance gene, a type II thioesterase gene, 3 regulatory genes, 4 genes with other functions, and 5 genes of unknown function. We propose a pathway for the biosynthesis of calcimycin and assign the genes to the biosynthesis steps. Our findings set the stage for producing much desired calcimycin derivatives using genetic modification instead of chemical synthesis.


2010 ◽  
Vol 76 (21) ◽  
pp. 7343-7347 ◽  
Author(s):  
Changming Zhao ◽  
Tingting Huang ◽  
Wenqing Chen ◽  
Zixin Deng

ABSTRACT Polyoxins consist of 14 structurally variable components which differentiate at three branch sites of the carbon skeleton. Open reading frame (ORF) SAV_4805 of Streptomyces avermitilis, showing similarity to thymine-7-hydroxylase, was proved to enhance the diversity of polyoxins at the C-5 site of the 1-(5′-amino-5′-deoxy-β-d-allofuranuronosyl) pyrimidine moiety.


Sign in / Sign up

Export Citation Format

Share Document