Genetic diversity of Ralstonia solanacearum species complex strains obtained from Guangxi, China and their pathogenicity on plants in the Cucurbitaceae family and other botanical families

2021 ◽  
Author(s):  
Yonglin He ◽  
Yuanyuan Chen ◽  
Yaoweng Zhang ◽  
Xiaofang Qin ◽  
Xiaolan Wei ◽  
...  
2017 ◽  
Vol 8 ◽  
Author(s):  
Noura Yahiaoui ◽  
Jean-Jacques Chéron ◽  
Santatra Ravelomanantsoa ◽  
Azali A. Hamza ◽  
Bobb Petrousse ◽  
...  

Genomics ◽  
2021 ◽  
Author(s):  
Osiel Silva Gonçalves ◽  
Flávia de Oliveira Souza ◽  
Fernanda Prieto Bruckner ◽  
Mateus Ferreira Santana ◽  
Poliane Alfenas-Zerbini

2021 ◽  
Author(s):  
Rodrigo G. Freitas ◽  
Pollyane S. Hermenegildo ◽  
Lúcio M. S. Guimarães ◽  
Edival A. V. Zauza ◽  
Jorge L. Badel ◽  
...  

2021 ◽  
Author(s):  
Drew R. Schield ◽  
Elizabeth S.C. Scordato ◽  
Chris C.R. Smith ◽  
Javan K. Carter ◽  
Sidi Imad Cherkaoui ◽  
...  

Author(s):  
Viola Kurm ◽  
Ilse Houwers ◽  
Claudia E. Coipan ◽  
Peter Bonants ◽  
Cees Waalwijk ◽  
...  

AbstractIdentification and classification of members of the Ralstonia solanacearum species complex (RSSC) is challenging due to the heterogeneity of this complex. Whole genome sequence data of 225 strains were used to classify strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI score (>95%), 191 out of 192(99.5%) RSSC strains could be grouped into the three species R. solanacearum, R. pseudosolanacearum, and R. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accordance with MLSA. The IIB subgroups found by ANI and MLSA also differed in the number of SNPs in the primer and probe sites of various assays. An in-silico analysis of eight TaqMan and 11 conventional PCR assays was performed using the whole genome sequences. Based on this analysis several cases of potential false positives or false negatives can be expected upon the use of these assays for their intended target organisms. Two TaqMan assays and two PCR assays targeting the 16S rDNA sequence should be able to detect all phylotypes of the RSSC. We conclude that the increasing availability of whole genome sequences is not only useful for classification of strains, but also shows potential for selection and evaluation of clade specific nucleic acid-based amplification methods within the RSSC.


2014 ◽  
Vol 104 (11) ◽  
pp. 1175-1182 ◽  
Author(s):  
Greecy M. R. Albuquerque ◽  
Liliana A. Santos ◽  
Kátia C. S. Felix ◽  
Christtianno L. Rollemberg ◽  
Adriano M. F. Silva ◽  
...  

The epidemic situation of Moko disease-causing strains in Latin America and Brazil is unclear. Thirty-seven Ralstonia solanacearum strains from Brazil that cause the Moko disease on banana and heliconia plants were sampled and phylogenetically typed using the endoglucanase (egl) and DNA repair (mutS) genes according to the phylotype and sequevar classification. All of the strains belonged to phylotype II and a portion of the strains was typed as the Moko disease-related sequevars IIA-6 and IIA-24. Nevertheless, two unsuspected sequevars also harbored the Moko disease-causing strains IIA-41 and IIB-25, and a new sequevar was described and named IIA-53. All of the strains were pathogenic to banana and some of the strains of sequevars IIA-6, IIA-24, and IIA-41 were also pathogenic to tomato. The Moko disease-causing strains from sequevar IIB-25 were pathogenic to potato but not to tomato. These results highlight the high diversity of strains of Moko in Brazil, reinforce the efficiency of the egl gene to reveal relationships among these strains, and contribute to a better understanding of the diversity of paraphyletic Moko disease-causing strains of the R. solanacearum species complex, where the following seven distinct genetic clusters have been described: IIA-6, IIA-24, IIA-41, IIA-53, IIB-3, IIB-4, and IIB-25.


1998 ◽  
pp. 44-49 ◽  
Author(s):  
J. M. Van Der Wolf ◽  
P. J. M. Bonants ◽  
J. J. Smith ◽  
M. Hagenaar ◽  
E. Nijhuis ◽  
...  

Author(s):  
Jasper John A. Obico ◽  
Julie F. Barcelona ◽  
Vincent Bonhomme ◽  
Marie Hale ◽  
Pieter B. Pelser

Tetrastigma loheri (Vitaceae) is a vine species native to Borneo and the Philippines. Because it is a commonly encountered forest species in the Philippines, T. loheri is potentially suitable for studying patterns of genetic diversity and connectivity among fragmented forestecosystems in various parts of this country. However, previous research suggests that T. loheri is part of a species complex in the Philippines (i.e. the T. loheri s. l. complex) that potentially also contains Philippine plants identified as T. diepenhorstii, T. philippinense, T. stenophyllum, andT. trifoliolatum. This uncertainty about its taxonomic delimitation can make it challenging to draw conclusions that are relevant to conservation from genetic studies using this species. Here, we tested the hypothesis that T. loheri s. l. is composed of more than one species in the Philippines.For this, we used generalized mixed Yule coalescent (GMYC) and Poisson tree process (PTP) species delimitation models to identify clades within DNA sequence phylogenies of T. loheri s. l. that might constitute species within this complex. Although these methods identified several putative species, these are statistically poorly supported and subsequent random forest analyses using a geometric morphometric leafshape dataset and several other vegetative characters did not result in the identification of characters that can be used to discriminate these putative species morphologically. Furthermore, the results of principal component and principal coordinates analyses of these data suggest the absence of morphological discontinuities within the species complex. Under a unified species concept that uses phylogenetic and morphological distinction as operational criteria for species recognition, we therefore conclude that the currently available data do not support recognizing multiple species in the T. loheri s. l. complex. This implies that T. loheri is best considered as a single, morphologically variable specieswhen used for studying patterns of genetic diversity and connectivity in the Philippines.


Sign in / Sign up

Export Citation Format

Share Document