scholarly journals Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi

2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
V. Bala Chaudhary ◽  
Kristine Akland ◽  
Nancy C. Johnson ◽  
Matthew A. Bowker
1994 ◽  
Vol 92 (2) ◽  
pp. 364-368 ◽  
Author(s):  
Ulrich Galli ◽  
Hannes Schuepp ◽  
Christian Brunold

1969 ◽  
Vol 22 (02) ◽  
pp. 304-315 ◽  
Author(s):  
E. W Salzman ◽  
T. P Ashford ◽  
D. A Chambers ◽  
Lena L. Neri

SummaryAfter incubation of platelet-rich plasma with labelled adenosine or ADP, platelet incorporation of radioactivity was assessed. Platelets were rapidly separated for counting by filtration through cellulose acetate Millipore. Inulin-H3 served as a plasma marker, and triple isotope techniques permitted simultaneous assessment of the behavior of the adenine and phosphate moieties of ADP without washing of platelets. In other experiments, electron microscopic radioautography was employed to trace the label after platelet incorporation.The results were consistent with previous reports that ADP is dephosphorylated in plasma and is incorporated by platelets only as a dephosphorylated residue, probably adenosine. The label crossed the platelet membrane and entered the platelet, where it was distributed in platelet granules and the agranular cell sap. Concentration within granules occurred to a minor degree.The results support the hypothesis that platelet aggregation by ADP occurs without a persistent bond of ADP to the platelet. Inhibition of aggregation by adenosine probably depends on a metabolic or transport process rather than on competition between adenosine and ADP for platelet binding sites.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Author(s):  
Geslanny Oliveira Sousa ◽  
Valéria Lima Barbosa ◽  
Eleonora Barbosa Santiago da Costa ◽  
Francisco de Assys Romero da Mota Sousa ◽  
Priscila Gonçalves Figueiredo de Sousa

Sign in / Sign up

Export Citation Format

Share Document