MULTI-FREQUENCY INTERPRETATION OF ELECTRIC RESISTIVITY AND DIELECTRIC PERMITTIVITY MEASUREMENTS FOR SIMULTANEOUS ASSESSMENT OF POROSITY, WATER SATURATION, AND WETTABILITY

2019 ◽  
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari ◽  
Carlos Torres-Verdín
Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


2021 ◽  
Author(s):  
Zulkuf Azizoglu ◽  
◽  
Zoya Heidari ◽  

Broadband relative dielectric dispersion measurements are considered interesting options for assessment of water-filled pore volume. Conventional models such as Complex Refractive Index Model (CRIM) and Maxwell Garnett (MG), often overlook or oversimplify the complexity of pore structure, geometrical distribution of the constituting fluids, and spatial distribution of minerals. This yields to significant errors in assessment of water saturation especially in rocks with complex pore structure. Therefore, it becomes important to quantify the impacts of pore structure and spatial distribution of minerals on broadband relative dielectric dispersion measurements to be able to make decisions about reliability of water saturation estimates from these measurements in a given formation. The objectives of this paper are (a) to quantify the impacts of pore structure and spatial distribution of minerals on relative dielectric permittivity measurements in a wide range of frequencies, (b) to propose a new simple and physically meaningful workflow, which honors pore geometry and spatial distribution of minerals to enhance fluid saturation assessment using relative dielectric permittivity measurements, (c) to verify the reliability of the introduced model in the pore-scale domain. First, we perform numerical simulations of relative dielectric dispersion measurements in the frequency range of 20 MHz to 1 GHz in the pore-scale domain. The input to the numerical simulator includes pore-scale images of actual complex carbonate rock samples. We use a physically meaningful model which honors spatial distribution of the rock constituents for the multi-frequency interpretation of relative dielectric response. To verify the reliability of the model in multiple frequencies, we apply the model to the results of relative dielectric simulations in the pore-scale domain on 3D computed tomography scan (CT-scan) images of carbonate rock samples, which are synthetically saturated to obtain a wide range of water saturation. We successfully verified the reliability of the introduced model in the pore-scale domain using carbonate rock samples with multi-modal pore-size distribution. Estimated water saturations from the results of simulations at 1 GHz resulted in an average relative error of less than 4%. We observed measurable improvements in fluid saturation estimates compared to the cases which CRIM or MG models are used. Results demonstrated that application of conventional models to estimate water saturation from relative dielectric response is not reliable in frequencies below 1 GHz.


2021 ◽  
Author(s):  
Zulkuf Azizoglu ◽  
Zoya Heidari ◽  
Leonardo Goncalves ◽  
Lucas Abreu Blanes De Oliveira ◽  
Moacyr Silva Do Nascimento Neto

Abstract Broadband dielectric dispersion measurements are attractive options for assessment of water-filled pore volume, especially when quantifying salt concentration is challenging. However, conventional models for interpretation of dielectric measurements such as Complex Refractive Index Model (CRIM) and Maxwell Garnett (MG) model require oversimplifying assumptions about pore structure and distribution of constituting fluids/minerals. Therefore, dielectric-based estimates of water saturation are often not reliable in the presence of complex pore structure, rock composition, and rock fabric (i.e., spatial distribution of solid/fluid components). The objectives of this paper are (a) to propose a simple workflow for interpretation of dielectric permittivity measurements in log-scale domain, which takes the impacts of complex pore geometry and distribution of minerals into account, (b) to experimentally verify the reliability of the introduced workflow in the core-scale domain, and (c) to apply the introduced workflow for well-log-based assessment of water saturation. The dielectric permittivity model includes tortuosity-dependent parameters to honor the complexity of the pore structure and rock fabric for interpretation of broadband dielectric dispersion measurements. We estimate tortuosity-dependent parameters for each rock type from dielectric permittivity measurements conducted on core samples. To verify the reliability of dielectric-based water saturation model, we conduct experimental measurements on core plugs taken from a carbonate formation with complex pore structures. We also introduce a workflow for applying the introduced model to dielectric dispersion well logs for depth-by-depth assessment of water saturation. The tortuosity-dependent parameters in log-scale domain can be estimated either via experimental core-scale calibration, well logs in fully water-saturated zones, or pore-scale evaluation in each rock type. The first approach is adopted in this paper. We successfully applied the introduced model on core samples and well logs from a pre-salt formation in Santos Basin. In the core-scale domain, the estimated water saturation using the introduced model resulted in an average relative error of less than 11% (compared to gravimetric measurements). The introduced workflow improved water saturation estimates by 91% compared to CRIM. Results confirmed the reliability of the new dielectric model. In application to well logs, we observed significant improvements in water saturation estimates compared to cases where a conventional effective medium model (i.e., CRIM) was used. The documented results from both core-scale and well-log-scale applications of the introduced method emphasize on the importance of honoring pore structure in the interpretation of dielectric measurements.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


2021 ◽  
Author(s):  
Ping Zhang ◽  
◽  
Wael Abdallah ◽  
Gong Li Wang ◽  
Shouxiang Mark Ma ◽  
...  

It is desirable to evaluate the possibility of developing a deeper dielectric permittivity based Sw measurement for various petrophysical applications. The low frequency, (< MHz), resistivity-based method for water saturation (Sw) evaluation is the desired method in the industry due to its deepest depth of investigation (DOI, up to 8 ft). However, the method suffers from higher uncertainty when formation water is very fresh or has mixed salinity. Dielectric permittivity and conductivity dispersion have been used to estimate Sw and salinity. The current dielectric dispersion tools, however, have very shallow DOI due to their high measurement frequency up to GHz, which most likely confines the measurements within the near wellbore mud-filtrate invaded zones. In this study, effective medium-model simulations were conducted to study different electromagnetic (EM) induced-polarization effects and their relationships to rock petrophysical properties. Special attention is placed on the complex conductivity at 2 MHz due to its availability in current logging tools. It is known that the complex dielectric saturation interpretation at the MHz range is quite difficult due to lack of fully understood of physics principles on complex dielectric responses, especially when only single frequency signal is used. Therefore, our study is focused on selected key parameters: water-filled porosity, salinity, and grain shape, and their effects on the modeled formation conductivity and permittivity. To simulate field logs, some of the petrophysical parameters mentioned above are generated randomly within expected ranges. Formation conductivity and permittivity are then calculated using our petrophysical model. The calculated results are then mixed with random noises of 10% to make them more realistic like downhole logs. The synthetic conductivity and permittivity logs are used as inputs in a neural network application to explore possible correlations with water-filled porosity. It is found that while the conductivity and permittivity logs are generated from randomly selected petrophysical parameters, they are highly correlated with water-filled porosity. Furthermore, if new conductivity and permittivity logs are generated with different petrophysical parameters, the correlations defined before can be used to predict water-filled porosity in the new datasets. We also found that for freshwater environments, the conductivity has much lower correlation with water-filled porosity than the one derived from the permittivity. However, the correlations are always improved when both conductivity and permittivity were used. This exercise serves as proof of concept, which opens an opportunity for field data applications. Field logs confirm the findings in the model simulations. Two propagation resistivity logs measured at 2 MHz are processed to calculate formation conductivity and permittivity. Using independently estimated water-filled porosity, a model was trained using a neural network for one of the logs. Excellent correlation between formation conductivity and permittivity and water-filled porosity is observed for the trained model. This neural network- generated model can be used to predict water content from other logs collected from different wells with a coefficient of correlation up to 96%. Best practices are provided on the performance of using conductivity and permittivity to predict water-filled porosity. These include how to effectively train the neural network correlation models, general applications of the trained model for logs from different fields. With the established methodology, deep dielectric-based water saturation in freshwater and mixed salinity environments is obtained for enhanced formation evaluation, well placement, and reservoir saturation monitoring.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 1930-1942 ◽  
Author(s):  
Huangye Chen ◽  
Zoya Heidari

Summary Complex pore geometry and composition, as well as anisotropic behavior and heterogeneity, can affect physical properties of rocks such as electrical resistivity and dielectric permittivity. The aforementioned physical properties are used to estimate in-situ petrophysical properties of the formation such as hydrocarbon saturation. In the application of conventional methods for interpretation of electrical-resistivity (e.g., Archie's equation and the dual-water model) and dielectric-permittivity measurements [e.g., complex refractive index model (CRIM)], the impacts of complex pore structure (e.g., kerogen porosity and intergranular pores), pyrite, and conductive mature kerogen have not been taken into account. These limitations cause significant uncertainty in estimates of water saturation. In this paper, we introduce a new method that combines interpretation of dielectric-permittivity and electrical-resistivity measurements to improve assessment of hydrocarbon saturation. The combined interpretation of dielectric-permittivity and electrical-resistivity measurements enables assimilating spatial distribution of rock components (e.g., pore, kerogen, and pyrite networks) in conventional models. We start with pore-scale numerical simulations of electrical resistivity and dielectric permittivity of fluid-bearing porous media to investigate the structure of pore and matrix constituents in these measurements. The inputs to these simulators are 3D pore-scale images. We then introduce an analytical model that combines resistivity and permittivity measurements to assess water-filled porosity and hydrocarbon saturation. We apply the new method to actual digital sandstones and synthetic digital organic-rich mudrock samples. The relative errors (compared with actual values estimated from image processing) in the estimate of water-filled porosity through our new method are all within the 10% range. In the case of digital sandstone samples, CRIM provided reasonable estimates of water-filled porosity, with only four out of twenty-one estimates beyond 10% relative error, with the maximum error of 30%. However, in the case of synthetic digital organic-rich mudrocks, six out of ten estimates for water-filled porosity were beyond 10% with CRIM, with the maximum error of 40%. Therefore, the improvement was more significant in the case of organic-rich mudrocks with complex pore structure. In the case of synthetic digital organic-rich mudrock samples, our simulation results confirm that not only the pore structure but also spatial distribution and tortuosity of water, kerogen, and pyrite networks affect the measurements of dielectric permittivity and electrical resistivity. Taking into account these parameters through the joint interpretation of dielectric-permittivity and electrical-resistivity measurements significantly improves assessment of hydrocarbon saturation.


Sign in / Sign up

Export Citation Format

Share Document