scholarly journals THE INTERPRETATION OF RESPIRATORY SYSTEM IMPEDANCE IN THE EARLY EXPIRATORY PHASE MEASURED BY FORCED OSCILLATION TECHNIQUE

Respirology ◽  
2018 ◽  
Vol 23 ◽  
pp. 243-243
1988 ◽  
Vol 64 (5) ◽  
pp. 1786-1791 ◽  
Author(s):  
P. Gustin ◽  
A. R. Dhem ◽  
F. Lomba ◽  
P. Lekeux ◽  
K. P. Van de Woestijne ◽  
...  

We have determined the resistance (Rrs) and the reactance (Xrs) of the total respiratory system in unsedated spontaneously breathing calves at various frequencies. A pseudorandom noise pressure wave was produced at the nostrils of the animals by means of a loudspeaker adapted to the nose by a tightly fitting mask. A Fourier analysis of the pressure in the nostrils and flow signals yielded mean Rrs and Xrs, over 16 s, at frequencies of 2–26 Hz. A good correlation was found between values of pulmonary resistances measured by the isovolume method at the respiratory frequency of animals and values obtained at a frequency of 6 Hz by use of our technique. The linearity of the respiratory system, the reproducibility of the technique, and the effects of upper airways on results have been studied. In healthy calves, Rrs increases with frequency. Mean resonant frequency is 7.5 Hz. Bronchospasm was induced in six calves by administration of intravenous organophosphates. Rrs tended to decrease with increasing frequency. Resonant frequency exceeded 26 Hz. All parameters returned to initial values after administration of atropine. In healthy calves, atropine produces a decrease in Rrs, especially at low frequencies. Values of resonant frequency are not modified.


1983 ◽  
Vol 55 (2) ◽  
pp. 335-342 ◽  
Author(s):  
M. Cauberghs ◽  
K. P. Van de Woestijne

The series and shunt components of the impedance of the upper airway (Zuaw) were evaluated from measurements obtained during a Valsalva maneuver by means of a modified forced oscillation technique. When the cheeks are supported, the upper airway can be represented by a single distributed transmission line. The homogeneity of this line was confirmed by measuring separately Zuaw and the impedance of the mouth. Correction of the impedance of the respiratory system, determined by means of the forced oscillations technique, for the shunt properties of Zuaw results in some modifications of the frequency dependence of resistance (Rrs) in healthy adults and in marked changes of the absolute values of Rrs in children and in patients with obstructive lung disease.


1975 ◽  
Vol 39 (2) ◽  
pp. 305-311 ◽  
Author(s):  
D. C. Stanescu ◽  
R. Fesler ◽  
C. Veriter ◽  
A. Fans ◽  
L. Brasseur

We have modified the measurements of the resistance of the respiratory system, Rrs, by the forced oscillation technique and we have developed equipment to automatically compute Rrs. Flow rate and mouth pressure are treated by selective averaging filters that remove the interference of the subject's respiratory flow on the imposed oscillations. The filtered mean Rrs represents a weighted ensemble average computer over both inspiration and expiration. This method avoids aberrant Rrs values, decreases the variability, and yields an unbiased mean Rrs. Rrs may be measured during slow or rapid spontaneous breathing, in normals and in obstructive patients, over a range of 3–9 Hz. A good reproducibility of Rrs at several days' interval was demonstrated. Frequency dependence of Rrs was found in patients with obstructive lung disease but not in healthy nonsmokers.


2019 ◽  
Vol 126 (5) ◽  
pp. 1223-1231 ◽  
Author(s):  
Stephen Milne ◽  
Kanika Jetmalani ◽  
David G. Chapman ◽  
Joseph M. Duncan ◽  
Claude S. Farah ◽  
...  

Respiratory system reactance (Xrs) measured by the forced oscillation technique (FOT) is theoretically and experimentally related to lung volume. In chronic obstructive pulmonary disease (COPD), the absolute volume measured by body plethysmography includes a proportion that is inaccessible to pressure oscillations applied via the mouth, that is, a “noncommunicating” lung volume. We hypothesized that in COPD the presence of noncommunicating lung would disrupt the expected Xrs-volume relationship compared with plethysmographic functional residual capacity (FRCpleth). Instead, Xrs would relate to estimates of communicating volume, namely, expiratory reserve volume (ERV) and single-breath alveolar volume (VaSB). We examined FOT and lung function data from people with COPD ( n = 51) and from healthy volunteers ( n = 40). In healthy volunteers, we observed an expected inverse relationship between reactance at 5 Hz (X5) and FRCpleth. In contrast, there was no such relationship between X5 and FRCpleth in COPD subjects. However, there was an inverse relationship between X5 and both ERV and VaSB. Hence the theoretical Xrs-volume relationship is present in COPD but only when considering the communicating volume rather than the absolute lung volume. These findings confirm the role of reduced communicating lung volume as an important determinant of Xrs and therefore advance our understanding and interpretation of FOT measurements in COPD. NEW & NOTEWORTHY To investigate the determinants of respiratory system reactance (Xrs) measured by the forced oscillation technique (FOT) in chronic obstructive pulmonary disease (COPD), we examine the relationship between Xrs and lung volume. We show that Xrs does not relate to absolute lung volume (functional residual capacity) in COPD but instead relates only to the volume of lung in communication with the airway opening. This communicating volume may therefore be fundamental to our interpretation of FOT measurements in COPD and other pulmonary diseases.


Author(s):  
Toby K. McGovern ◽  
Annette Robichaud ◽  
Liah Fereydoonzad ◽  
Thomas F. Schuessler ◽  
James G. Martin

1992 ◽  
Vol 72 (1) ◽  
pp. 46-52 ◽  
Author(s):  
J. H. Bates ◽  
B. Daroczy ◽  
Z. Hantos

We compared the values of resistance produced by the forced oscillation technique (FOT) and the flow interruption technique (IT) when applied to six anesthetized paralyzed tracheostomized dogs. The FOT returned values of respiratory system resistance as a function of frequency [Re(f)] between 0.25 and 20 Hz. The IT returned a single value of resistance (Rinit) calculated by dividing the immediate change in tracheal pressure occurring upon interruption by the preinterruption flow. We found Rinit to coincide closely with Re(f) in the frequency range 5–20 Hz. Rinit has previously been interpreted as the high-frequency resistance of a resistance-elastance model of the respiratory system airways and tissues. It has also been shown previously, by direct measurement of alveolar pressure in dogs, that Rinit from the lungs alone is an accurate measure of airways resistance while Rinit obtained from the total respiratory system equals airways resistance plus a modest contribution from the chest wall. Re(f) at a frequency of approximately 10 Hz thus appears to be a useful quantity to measure as an index of airways resistance in the dog.


2016 ◽  
Vol 2 (2) ◽  
pp. 00094-2015 ◽  
Author(s):  
Joanna C. Watts ◽  
Claude S. Farah ◽  
Leigh M. Seccombe ◽  
Blake M. Handley ◽  
Robin E. Schoeffel ◽  
...  

The forced oscillation technique (FOT) is gaining clinical acceptance, facilitated by more commercial devices and clinical data. However, the effects of variations in testing protocols used in FOT data acquisition are unknown. We describe the effect of duration of data acquisition on FOT results in subjects with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls.FOT data were acquired from 20 healthy, 22 asthmatic and 18 COPD subjects for 60 s in triplicate. The first 16, 30 and 60 s of each measurement were analysed to obtain total, inspiratory and expiratory resistance of respiratory system (Rrs) and respiratory system reactance (Xrs) at 5 and 19 Hz.With increasing duration, there was a decrease in total and expiratory Rrs for healthy controls, total and inspiratory Rrs for asthmatic subjects and magnitude of total and inspiratory Xrs for COPD subjects at 5 Hz. These decreases were small compared to the differences between clinical groups. Measuring for 16, 30 and 60 s provided ≥3 acceptable breaths in at least 90, 95 and 100% of subjects, respectively. The coefficient of variation for total Rrs and Xrs also decreased with duration. Similar results were found for Rrs and Xrs at 19 Hz.FOT results are statistically, but likely minimally, impacted by acquisition duration in healthy, asthmatic or COPD subjects.


Sign in / Sign up

Export Citation Format

Share Document