scholarly journals Non-invasive measurements of respiratory system mechanical properties by the forced oscillation technique in spontaneously breathing, mixed-breed, normal term lambs from birth to five months of age

2019 ◽  
Vol 40 (10) ◽  
pp. 105007 ◽  
Author(s):  
Chiara Veneroni ◽  
Mar Janna Dahl ◽  
Anna Lavizzari ◽  
Elaine Dawson ◽  
Andrew Rebentisch ◽  
...  
1988 ◽  
Vol 64 (5) ◽  
pp. 1786-1791 ◽  
Author(s):  
P. Gustin ◽  
A. R. Dhem ◽  
F. Lomba ◽  
P. Lekeux ◽  
K. P. Van de Woestijne ◽  
...  

We have determined the resistance (Rrs) and the reactance (Xrs) of the total respiratory system in unsedated spontaneously breathing calves at various frequencies. A pseudorandom noise pressure wave was produced at the nostrils of the animals by means of a loudspeaker adapted to the nose by a tightly fitting mask. A Fourier analysis of the pressure in the nostrils and flow signals yielded mean Rrs and Xrs, over 16 s, at frequencies of 2–26 Hz. A good correlation was found between values of pulmonary resistances measured by the isovolume method at the respiratory frequency of animals and values obtained at a frequency of 6 Hz by use of our technique. The linearity of the respiratory system, the reproducibility of the technique, and the effects of upper airways on results have been studied. In healthy calves, Rrs increases with frequency. Mean resonant frequency is 7.5 Hz. Bronchospasm was induced in six calves by administration of intravenous organophosphates. Rrs tended to decrease with increasing frequency. Resonant frequency exceeded 26 Hz. All parameters returned to initial values after administration of atropine. In healthy calves, atropine produces a decrease in Rrs, especially at low frequencies. Values of resonant frequency are not modified.


1983 ◽  
Vol 55 (2) ◽  
pp. 335-342 ◽  
Author(s):  
M. Cauberghs ◽  
K. P. Van de Woestijne

The series and shunt components of the impedance of the upper airway (Zuaw) were evaluated from measurements obtained during a Valsalva maneuver by means of a modified forced oscillation technique. When the cheeks are supported, the upper airway can be represented by a single distributed transmission line. The homogeneity of this line was confirmed by measuring separately Zuaw and the impedance of the mouth. Correction of the impedance of the respiratory system, determined by means of the forced oscillations technique, for the shunt properties of Zuaw results in some modifications of the frequency dependence of resistance (Rrs) in healthy adults and in marked changes of the absolute values of Rrs in children and in patients with obstructive lung disease.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 554
Author(s):  
Silvia Terraneo ◽  
Rocco Francesco Rinaldo ◽  
Giuseppe Francesco Sferrazza Papa ◽  
Fulvia Ribolla ◽  
Carlo Gulotta ◽  
...  

Discriminating between cardiac and pulmonary dyspnea is essential for patients’ management. We investigated the feasibility and ability of forced oscillation techniques (FOT) in distinguishing between acute exacerbation of COPD (AECOPD), and acute decompensated heart failure (ADHF) in a clinical emergency setting. We enrolled 49 patients admitted to the emergency department (ED) for dyspnea and acute respiratory failure for AECOPD, or ADHF, and 11 healthy subjects. All patients were able to perform bedside FOT measurement. Patients with AECOPD showed a significantly higher inspiratory resistance at 5 Hz, Xrs5 (179% of predicted, interquartile range, IQR 94–224 vs. 100 IQR 67–149; p = 0.019), and a higher inspiratory reactance at 5 Hz (151%, IQR 74–231 vs. 57 IQR 49–99; p = 0.005) than patients with ADHF. Moreover, AECOPD showed higher heterogeneity of ventilation (respiratory system resistance difference at 5 and 19 Hz, Rrs5-19: 1.49 cmH2O/(L/s), IQR 1.03–2.16 vs. 0.44 IQR 0.22–0.76; p = 0.030), and a higher percentage of flow limited breaths compared to ADHF (10%, IQR 0–100 vs. 0 IQR 0–12; p = 0.030). FOT, which resulted in a suitable tool to be used in the ED setting, has the ability to identify distinct mechanical properties of the respiratory system in AECOPD and ADHF.


1975 ◽  
Vol 39 (2) ◽  
pp. 305-311 ◽  
Author(s):  
D. C. Stanescu ◽  
R. Fesler ◽  
C. Veriter ◽  
A. Fans ◽  
L. Brasseur

We have modified the measurements of the resistance of the respiratory system, Rrs, by the forced oscillation technique and we have developed equipment to automatically compute Rrs. Flow rate and mouth pressure are treated by selective averaging filters that remove the interference of the subject's respiratory flow on the imposed oscillations. The filtered mean Rrs represents a weighted ensemble average computer over both inspiration and expiration. This method avoids aberrant Rrs values, decreases the variability, and yields an unbiased mean Rrs. Rrs may be measured during slow or rapid spontaneous breathing, in normals and in obstructive patients, over a range of 3–9 Hz. A good reproducibility of Rrs at several days' interval was demonstrated. Frequency dependence of Rrs was found in patients with obstructive lung disease but not in healthy nonsmokers.


2017 ◽  
Vol 62 (6) ◽  
pp. 635-642 ◽  
Author(s):  
Chuong Ngo ◽  
Karl Krüger ◽  
Thomas Vollmer ◽  
Stefan Winter ◽  
Bernhard Penzlin ◽  
...  

AbstractThe forced oscillation technique (FOT) is a non-invasive pulmonary function test which is based on the measurement of respiratory impedance. Recently, promising results were obtained by the application of FOT on patients with respiratory failure and obstructive sleep apnea (OSA). By using a nasal mask instead of a mouthpiece, the influences of the nasal passage and upper shunt alter the measured mechanical impedance. In this paper, we investigated the effects of the nasal passage and mask on FOT measurements from eight healthy subjects. A method for flow correction has been developed, which contains a pressure-flow characteristics compensation of the undetermined flow leakage at the face-mask interface. Impedance calculation and parameter estimation were performed in the frequency domain using fast Fourier transform (FFT). Average nasal parameters were


2019 ◽  
Vol 126 (5) ◽  
pp. 1223-1231 ◽  
Author(s):  
Stephen Milne ◽  
Kanika Jetmalani ◽  
David G. Chapman ◽  
Joseph M. Duncan ◽  
Claude S. Farah ◽  
...  

Respiratory system reactance (Xrs) measured by the forced oscillation technique (FOT) is theoretically and experimentally related to lung volume. In chronic obstructive pulmonary disease (COPD), the absolute volume measured by body plethysmography includes a proportion that is inaccessible to pressure oscillations applied via the mouth, that is, a “noncommunicating” lung volume. We hypothesized that in COPD the presence of noncommunicating lung would disrupt the expected Xrs-volume relationship compared with plethysmographic functional residual capacity (FRCpleth). Instead, Xrs would relate to estimates of communicating volume, namely, expiratory reserve volume (ERV) and single-breath alveolar volume (VaSB). We examined FOT and lung function data from people with COPD ( n = 51) and from healthy volunteers ( n = 40). In healthy volunteers, we observed an expected inverse relationship between reactance at 5 Hz (X5) and FRCpleth. In contrast, there was no such relationship between X5 and FRCpleth in COPD subjects. However, there was an inverse relationship between X5 and both ERV and VaSB. Hence the theoretical Xrs-volume relationship is present in COPD but only when considering the communicating volume rather than the absolute lung volume. These findings confirm the role of reduced communicating lung volume as an important determinant of Xrs and therefore advance our understanding and interpretation of FOT measurements in COPD. NEW & NOTEWORTHY To investigate the determinants of respiratory system reactance (Xrs) measured by the forced oscillation technique (FOT) in chronic obstructive pulmonary disease (COPD), we examine the relationship between Xrs and lung volume. We show that Xrs does not relate to absolute lung volume (functional residual capacity) in COPD but instead relates only to the volume of lung in communication with the airway opening. This communicating volume may therefore be fundamental to our interpretation of FOT measurements in COPD and other pulmonary diseases.


Sign in / Sign up

Export Citation Format

Share Document