Beyond slash‐and‐burn: The roles of human activities, altered hydrology and fuels in peat fires in Central Kalimantan, Indonesia

2020 ◽  
Vol 41 (2) ◽  
pp. 190-208 ◽  
Author(s):  
Jenny E. Goldstein ◽  
Laura Graham ◽  
Sofyan Ansori ◽  
Yenni Vetrita ◽  
Andri Thomas ◽  
...  
2016 ◽  
Vol 16 (18) ◽  
pp. 11711-11732 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65).


2016 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs, g compound per kg biomass burned) for CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc.; up to ~90 gases in all. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35) indicating essentially pure smoldering combustion and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g/kg) were: carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %) and other gases compared with widely-used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g/kg. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent (2012) lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measureable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2/kg fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångstrӧm exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g/kg) and the mass absorption coefficient (MAC, m2/g) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g/kg). Aerosol absorption at 405 nm was ~52 times larger than at 870 nm and BrC contributed ~96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC (~0.1) for the bulk OC, as expected for the low BC / OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 = 0.65).


2018 ◽  
Vol 20 (1) ◽  
pp. 110-117
Author(s):  
ACHMAD SIDDIK THOHA ◽  
BAMBANG HERO SAHARJO ◽  
RIZALDI BOER ◽  
MUHAMMAD ARDIANSYAH

Thoha AS, Saharjo BH, Boer R, Ardiansyah M. 2019. Characteristics and causes of forest and land fires in Kapuas District, Central Kalimantan Province, Indonesia. Biodiversitas 20: 110-117. Forest and land fire occurs almost every year in Indonesia. Its impact is very harmful for human and environment. Developing a program in fire management requires identification of forest and land fire characteristics and its causes. The aim of this research was to evaluate the characteristics and causes of forest and land fire in Kapuas District Central Kalimantan Province. Spatial analysis of hotspots with rainfall was used to determine temporal distribution of fire. Spatial distribution between hotspot and causative factors was determined to identify spatial characteristics of fires. Increasing number of hotspots occurs when monthly rainfall decreases. Most high fire activities are located in peatland, swamp shrubs, close to road, close to river and far away from villages. Fire causes from human activities mostly originated from swamp shrub burning and land clearing for farming. Hotspot density has various relationship with peat depth, land cover, accessibility, and human activities.


Author(s):  
Novera Kristianti ◽  
Albertus Joko Santoso ◽  
Pranowo Pranowo

One of the causes of smog as well as climate damage, particularly in Palangka Raya, Center Kalimantan, are peat forest fires. There are a lot of losses inflicted by the smog including the increasing number of people who suffer respiratory infection (ARI) due to polluted air and any other related aspects. Peat fires are problematic to overcome because the locations of fires are difficult to be accessed. This paper focuses on building the system to predict the distribution of peat forest fire hotspots by utilizing satellite imagery. In designing the system for predicting the fire hotspots distribution, wavelet orthogonal was used as the initial processing of mapping the distribution of peat forest fire hotspots. Meanwhile, backpropagation method was used to identify the fire hotspot distribution patterns of peat forest fire in this system. From the result of the data tested which had been done for predicting the peat forest fire hotspots, the decomposition image obtained using Haar wavelet had the highest percentage of accuracy to recognize the fire hotspots, which is 90%. The recency of this system was its ability to predict the peat forest fire hotspots distribution which can be used as peat forest fires prevention, especially in Palangka Raya, Central Kalimantan.


2014 ◽  
Vol 22 (4) ◽  
pp. 2384-2395 ◽  
Author(s):  
Yustiawati ◽  
Yusuke Kihara ◽  
Kazuto Sazawa ◽  
Hideki Kuramitz ◽  
Masaaki Kurasaki ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Eni Maftuah ◽  
Nur Wakhid

<p>Slash and burn are commonly practiced in opening new field in tropical peatland. This method, if uncontrolled, may cause peat fires and increase CO<sub>2</sub> emissions. Therefore, alternative method of peatland preparation for agriculture is needed. The study aimed to obtain peatland preparation technologies to prevent peat fires and reduce CO<sub>2</sub> emissions. The study was conducted at degraded peatland in Kalampangan, Central Kalimantan from June to October 2017. Split plot design with three replications was used. The main plot was the type of land arrangement, i.e. without and with raised beds. The subplot was the type of land preparation, i.e. slash and burn, slash followed by composting the weeds, slash and make the weeds as mulches, and slash followed by composting the weeds and accompanied by plastic mulch. Soil characteristics, fires vulnerability, and CO<sub>2</sub> emissions were measured before and after land preparation. Results showed that slash and composting reduced CO<sub>2</sub> emission from cultivated peatland. Slash and burn resulted 4.98 t CO<sub>2</sub> ha<sup>-1</sup> emissions per season, which is four times higher than slash followed by composting that produced 1.20 t CO<sub>2</sub> ha<sup>-1</sup> per season. Groundwater level, redox potential (Eh), soil pH, and soil water content affected CO<sub>2</sub> emissions. Groundwater level and water content negatively correlated with CO<sub>2</sub> emissions. The shallow water level and the high water content, the lower is CO<sub>2</sub> emissions. The Eh and soil pH positively correlated with CO<sub>2</sub> emissions. The high positive value of Eh indicates that the soil was in high oxidative conditions, resulting in high CO<sub>2</sub> emissions.</p><p align="center"> </p>


Sign in / Sign up

Export Citation Format

Share Document