Non-invasive longitudinal monitoring of angiogenesis in a murine full-thickness cutaneous wound healing model using high-resolution three-dimensional ultrasound imaging

2017 ◽  
Vol 23 (4) ◽  
pp. 581-587
Author(s):  
K. Mukai ◽  
W. Zhu ◽  
Y. Nakajima ◽  
M. Kobayashi ◽  
T. Nakatani
2017 ◽  
Vol 139 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Clement D. Marshall ◽  
Michael S. Hu ◽  
Tripp Leavitt ◽  
Leandra A. Barnes ◽  
Alexander T. M. Cheung ◽  
...  

2021 ◽  
Author(s):  
III Georges St. Laurent ◽  
Ian Toma ◽  
Bernd Seilheimer ◽  
Konstantin Cesnulevicius ◽  
Myron Schultz ◽  
...  

Abstract Background: Despite proven therapeutic effects in inflammatory conditions, the specific mechanisms of phytochemical therapies are not well understood. The transcriptome effects of Tr14 (Traumeel), a multicomponent natural product, and diclofenac, a non-selective cyclooxygenase (COX) inhibitor, were compared in a mouse cutaneous wound healing model to identify both known and novel pathways for the anti-inflammatory effect of plant-derived natural products. Methods: Skin samples from abraded mice were analyzed by single-molecule, amplification-free RNAseq transcript profiling at 7 points between 12-192 hours after injury. Immediately after injury, the wounds were treated with either diclofenac, Tr14, or placebo control (n=7 per group/time). RNAseq levels were compared between treatment and control at each time point using a systems biology approach. Results: At early time points (12-36 hours), both control and Tr14-treated wounds showed marked increase in the inducible COX2 enzyme mRNA, while diclofenac-treated wounds did not. Tr14, in contrast, modulated lipoxygenase transcripts, especially ALOX12/15, and phospholipases involved in arachidonate metabolism. Notably, Tr14 modulated a group of cell-type specific markers, including the T cell receptor, that could be explained by an overarching effect on the type of cells that were recruited into the wound tissue. Conclusions: Tr14 and diclofenac had very different effects on the COX/LOX synthetic pathway after cutaneous wounding. Tr14 allowed normal autoinduction of COX2 mRNA, but suppressed mRNA levels for key enzymes in the leukotriene synthetic pathway. Tr14 appeared to have a broad ‘phytocellular’ effect on the wound transcriptome by altering the balance of cell types present in the wound.


2014 ◽  
Vol 22 (6) ◽  
pp. 740-748 ◽  
Author(s):  
Alfred Gugerell ◽  
Waltraud Pasteiner ◽  
Sylvia Nürnberger ◽  
Johanna Kober ◽  
Alexandra Meinl ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Georges St. Laurent ◽  
Ian Toma ◽  
Bernd Seilheimer ◽  
Konstantin Cesnulevicius ◽  
Myron Schultz ◽  
...  

Abstract Background Despite proven therapeutic effects in inflammatory conditions, the specific mechanisms of phytochemical therapies are not well understood. The transcriptome effects of Traumeel (Tr14), a multicomponent natural product, and diclofenac, a non-selective cyclooxygenase (COX) inhibitor, were compared in a mouse cutaneous wound healing model to identify both known and novel pathways for the anti-inflammatory effect of plant-derived natural products. Methods Skin samples from abraded mice were analyzed by single-molecule, amplification-free RNAseq transcript profiling at 7 points between 12 and 192 h after injury. Immediately after injury, the wounds were treated with either diclofenac, Tr14, or placebo control (n = 7 per group/time). RNAseq levels were compared between treatment and control at each time point using a systems biology approach. Results At early time points (12–36 h), both control and Tr14-treated wounds showed marked increase in the inducible COX2 enzyme mRNA, while diclofenac-treated wounds did not. Tr14, in contrast, modulated lipoxygenase transcripts, especially ALOX12/15, and phospholipases involved in arachidonate metabolism. Notably, Tr14 modulated a group of cell-type specific markers, including the T cell receptor, that could be explained by an overarching effect on the type of cells that were recruited into the wound tissue. Conclusions Tr14 and diclofenac had very different effects on the COX/LOX synthetic pathway after cutaneous wounding. Tr14 allowed normal autoinduction of COX2 mRNA, but suppressed mRNA levels for key enzymes in the leukotriene synthetic pathway. Tr14 appeared to have a broad ‘phytocellular’ effect on the wound transcriptome by altering the balance of cell types present in the wound.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kanae Mukai ◽  
Yukari Nakajima ◽  
Tamae Urai ◽  
Emi Komatsu ◽  
Kana Takata ◽  
...  

Estrogen replacement promotes cutaneous wound healing in 8–10-week young ovariectomized female mice. However, research using aged ovariectomized female mice has not been reported, to the best of our knowledge. Therefore, we investigated the effect of 17β-estradiol on cutaneous wound healing using 24-week middle-aged ovariectomized female mice. Twenty-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX), and sham (SHAM). After 4 weeks, the mice received two full-thickness wounds. Then, the OVX + 17β-estradiol group was administered 17β-estradiol at 0.01 g/day until healing. The ratio of wound area in the OVX + 17β-estradiol group was significantly decreased compared with that in the OVX group. The numbers of neutrophils and macrophages in the OVX + 17β-estradiol group were significantly smaller than those in the OVX group. In addition, the ratio of myofibroblasts in the OVX + 17β-estradiol group was significantly higher than that in the OVX group. These data suggested that exogenous continuous 17β-estradiol administration promotes cutaneous wound healing in 24-week OVX female mice by reducing wound area, shortening inflammatory response, and promoting wound contraction. However, it is unclear whether the effect of exogenous estrogen on wound healing outweighs the delay of wound healing due to advanced age.


2013 ◽  
Vol 20 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Monika Kuck ◽  
Helene Strese ◽  
Seyed Arash Alawi ◽  
Martina C. Meinke ◽  
Joachim W. Fluhr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document