scholarly journals Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes

2017 ◽  
Vol 22 (9) ◽  
pp. 1154-1165 ◽  
Author(s):  
Sylvia Joanne ◽  
Indra Vythilingam ◽  
Boon-Teong Teoh ◽  
Cherng-Shii Leong ◽  
Kim-Kee Tan ◽  
...  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Sumi Chetry ◽  
Saurav Jyoti Patgiri ◽  
Dibya Ranjan Bhattacharyya ◽  
Prafulla Dutta ◽  
N. Pradeep Kumar

Acta Tropica ◽  
2019 ◽  
Vol 199 ◽  
pp. 104975 ◽  
Author(s):  
Yue Chen ◽  
Jianrong Gao ◽  
Liu Yang ◽  
Chunyuan Li ◽  
Ronghua Chen ◽  
...  

2020 ◽  
Vol 14 (5) ◽  
pp. e0008303
Author(s):  
Olivia O’Connor ◽  
Elodie Calvez ◽  
Catherine Inizan ◽  
Nicolas Pocquet ◽  
Vincent Richard ◽  
...  

2020 ◽  
Author(s):  
Yong Wei ◽  
Jiatian Wang ◽  
Shengqun Deng ◽  
Peiyang Fan ◽  
Yulan He ◽  
...  

Abstract Background: As a vector of over 20 arboviruses, Aedes albopictus has spread throughout the world mostly since the second half of the twentieth century, and it is now found on every continent except Antarctica. Approximately 50-100 million people are infected with dengue virus (DENV) transmitted by Aedes mosquitoes each year, leading to a heavy economic burden on both governments and individuals. Understanding the population genetics and vector competence of vector species is critical to effectively preventing and controlling vector-borne diseases. The aim of this study was to examine the genetic structure and vector competence for dengue virus type 2 (DENV-2) of Ae. albopictus populations across China and their relationship.Methods: From July to September in 2019, Ae. albopictus eggs were collected by using ovitraps in 8 localities across China and reared to adults in laboratory. The mitochondrial gene cytochrome c oxidase subunit 1 (cox1) were used to examine the patterns of genetic diversity and population structure among native Ae. albopictus populations. The vector competence was detected by quantitative analysis of DENV-2 virus titer in mosquito tissues (midguts, heads and salivary glands) through qRT-PCR. The correlation between population genetic indices and DENV-2 loads in the mosquitoes’ tissues was also examined.Results: A total of 20 haplotypes of mtDNA cytochrome c oxidase subunit 1 (cox1) were identified in the 120 specimens from the eight tested populations. The dominate haplotype H01 was detected in seven geographic populations of mainland China. Genetic parameters such as haplotype diversity (Hd), nucleotide diversity (π), and fixation index (FST) revealed the population diversity decreasing from south to north, and low population genetic differentiation. STRUCTURE analysis indicated that Ae. albopictus populations in southern China were clustered. In addition, The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.364, P = 0.003). We observed no correlation between population genetic indices of cox1 in Ae. albopictus populations and DENV-2 virus loads. However, the southern populations had the low DENV-2 virus loads generally.Conclusion: Conventional genetic markers such as cox1 may not reflect genetic differences in mosquitoes’ vector competence in different regions. The fact of lower DENV-2 loads in southern populations may be associated with the stable immunity system established in mosquitoes due to the long-term prevalence of dengue disease in these areas. The genetic structure and vector competence of Ae. albopictus populations in this study may have implications for understanding the epidemiology, prevention and control of vector-borne diseases.


2021 ◽  
Vol 15 (4) ◽  
pp. e0009391
Author(s):  
Jielin Deng ◽  
Yijia Guo ◽  
Xinghua Su ◽  
Shuang Liu ◽  
Wenqiang Yang ◽  
...  

Background Aedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases. Methodology/Principal findings A laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.005; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2. Conclusions/Significance As Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 343
Author(s):  
Manjin Li ◽  
Dan Xing ◽  
Duo Su ◽  
Di Wang ◽  
Heting Gao ◽  
...  

Dengue virus (DENV), a member of the Flavivirus genus of the Flaviviridae family, can cause dengue fever (DF) and more serious diseases and thus imposes a heavy burden worldwide. As the main vector of DENV, mosquitoes are a serious hazard. After infection, they induce a complex host–pathogen interaction mechanism. Our goal is to further study the interaction mechanism of viruses in homologous, sensitive, and repeatable C6/36 cell vectors. Transcriptome sequencing (RNA-Seq) technology was applied to the host transcript profiles of C6/36 cells infected with DENV2. Then, bioinformatics analysis was used to identify significant differentially expressed genes and the associated biological processes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify the sequencing data. A total of 1239 DEGs were found by transcriptional analysis of Aedes albopictus C6/36 cells that were infected and uninfected with dengue virus, among which 1133 were upregulated and 106 were downregulated. Further bioinformatics analysis showed that the upregulated DEGs were significantly enriched in signaling pathways such as the MAPK, Hippo, FoxO, Wnt, mTOR, and Notch; metabolic pathways and cellular physiological processes such as autophagy, endocytosis, and apoptosis. Downregulated DEGs were mainly enriched in DNA replication, pyrimidine metabolism, and repair pathways, including BER, NER, and MMR. The qRT-PCR results showed that the concordance between the RNA-Seq and RT-qPCR data was very high (92.3%). The results of this study provide more information about DENV2 infection of C6/36 cells at the transcriptome level, laying a foundation for further research on mosquito vector–virus interactions. These data provide candidate antiviral genes that can be used for further functional verification in the future.


Sign in / Sign up

Export Citation Format

Share Document