scholarly journals Reduction of Total Suspended Solids, Turbidity and Colour of Palm Oil Mill Effluent using Hybrid Coagulation-Fltrafiltration Process

Author(s):  
W. Q. Ng ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

High consumption and production of palm oil have led to the massive generation of palm oil mill effluent (POME). This study was intended to reduce the total suspended solids (TSS), turbidity and colour using hybrid coagulation-ultrafiltration process. POME was pre-treated with coagulation process using polyaluminium chloride (PAC) and optimization of operating condition for coagulation process was performed. The coagulation results revealed that optimum pH, dosage of coagulant and rapid mixing speed were pH 4, 600 mg/L and 200 rpm, respectively. It achieved the highest percent reduction of TSS, turbidity and colour with 99.74%, 94.44% and 94.60%, respectively. Ultrafiltration (UF) membrane was fabricated using polyethersulfone (PES), polyvinylpyrrolidone (PVP) and titanium dioxide (TiO2­) nanoparticle. Different concentrations ranging from zero and 1.0 wt% of TiO2 nanoparticles were added into the dope solution. The characterization studies of UF membranes confirmed that higher concentration of TiO2 provided higher pure water permeability and more porous structure in the UF membranes. The amount of TiO2 in membrane only affected the permeate flux but had no obvious effects on the reduction of TSS, turbidity and colour. The optimum transmembrane pressure was found to be 3 bar, resulting in the greatest reduction of TSS, turbidity and colour.

2017 ◽  
Vol 52 (3) ◽  
pp. 520-527 ◽  
Author(s):  
Ali Akbar Zinatizadeh ◽  
Shaliza Ibrahim ◽  
Nasrin Aghamohammadi ◽  
Abdul Rahman Mohamed ◽  
Hadis Zangeneh ◽  
...  

Author(s):  
Mohammad Asad Tariq ◽  
Vasanthi Sethu ◽  
Senthilkumar Arumugasamy ◽  
Anurita Selvarajoo

In the present research, local rambutan seed extract was used as a bio-coagulant for the treatment of palm oil mill effluent (POME). Jar test experiments were conducted to find the optimal operating conditions for the removal of turbidity and total suspended solids from POME. At an optimal pH of 3, bio-coagulant dosage of 600 mg/L and room temperature of 28⁰C, an impressive removal of 65% of total suspended solids and 79% of turbidity was achieved. Along with this, a Feedforward Artificial Neural Network (FANN) was used to model the coagulation mechanism. Three different training algorithms were tested on the FANN, namely the Lavenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient methods. The best training algorithm was found to be Bayesian Regularization, based on the fact that it was in closer agreement with the experiment results and gave very low error percentage. The results of this study suggest that rambutan seeds have potential in being used as a bio-coagulant for POME treatment. Treatment efficiencies were reasonably high, and less sludge was produced using this natural treatment method, thus deemed to be more economical and environmentally friendly.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


2002 ◽  
Vol 35 (10) ◽  
pp. 1017-1019 ◽  
Author(s):  
Phang Lai Yee ◽  
Minato Wakisaka ◽  
Yoshihito Shirai ◽  
Mohd. Ali Hassan

2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Aziatul Niza Sadikin ◽  
Mohd Ghazali Mohd Nawawi ◽  
Norasikin Othman ◽  
Roshafima Rasit Ali ◽  
Umi Aisah Asli

The aim of this research is to evaluate the feasibility of the fibrous media for removal of total suspended solid and oil grease from palm oil mill effluent (POME). Wet lay-up method was adopted for filter fabrication where empty fruit bunches (EFB) were matted together with chitosan in non-woven manner. Chitosan-filled filter media were tested for their ability to reduce Total Suspended Solids (TSS) and Oil & Grease (O&G) from palm oil mill effluent. Filtration process results indicated that chitosan-filled filter media filtration only removed up to 28.14% of TSS and 29.86% of O&G. 


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 649
Author(s):  
Wiparat Chaipetch ◽  
Arisa Jaiyu ◽  
Panitan Jutaporn ◽  
Marc Heran ◽  
Watsa Khongnakorn

The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology and inorganic elements were analyzed by field emission scanning electron microscope coupled with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic force microscopy. The results showed that the formation and accumulation of protein EPS in the cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds) and microbial metabolic products (protein) significantly affected membrane fouling in the high-rate operation.


2014 ◽  
Vol 567 ◽  
pp. 116-121 ◽  
Author(s):  
Amirhossein Malakahmad ◽  
Sim Yeong Chuan ◽  
Mahdieh Eisakhani

Typically, palm oil mill industries use conventional anaerobic ponds for treatment of palm oil mill effluent (POME). But, this method alone cannot produce effluent discharge to an allowable limits set by the authorities. This study aimed to investigate further treatment of anaerobically digested POME (COD = 682±14 mgL-1, TSS = 29±7 mgL-1 and turbidity = 106±3 NTU) by coagulation-flocculation process. Alum, an industrial-accepted coagulant and OC 100 and PC 100W as two industrial-based polymeric flocculants were used in coagulation-flocculation process. Results indicate coagulation process in its optimum conditions (pH = 6, alum dosage = 1800 mgL-1, rapid mixing = 5 min, and slow mixing = 20 min) reduces the COD, TSS and turbidity by 59%, 80% and 86%, respectively. Flocculants OC 100 and PC 100W caused further reduction of TSS (85–88%) and turbidity (97–98%). By application of post treatment, the POME characteristics reached to an acceptable discharge level enforced by Malaysian department of environment (DOE).


Sign in / Sign up

Export Citation Format

Share Document