scholarly journals Fouling Behavior in a High-Rate Anaerobic Submerged Membrane Bioreactor (AnMBR) for Palm Oil Mill Effluent (POME) Treatment

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 649
Author(s):  
Wiparat Chaipetch ◽  
Arisa Jaiyu ◽  
Panitan Jutaporn ◽  
Marc Heran ◽  
Watsa Khongnakorn

The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology and inorganic elements were analyzed by field emission scanning electron microscope coupled with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic force microscopy. The results showed that the formation and accumulation of protein EPS in the cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds) and microbial metabolic products (protein) significantly affected membrane fouling in the high-rate operation.

2017 ◽  
Vol 245 ◽  
pp. 916-924 ◽  
Author(s):  
Sze Pin Tan ◽  
Hong Feng Kong ◽  
Mohammed J.K. Bashir ◽  
Po Kim Lo ◽  
Chii-Dong Ho ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Annop ◽  
P. Sridang ◽  
P. Chevakidagarn ◽  
K. Nopthavorn

The main objective was to compare the performances and the removal efficiencies of two biological treatment systems, a submerged membrane bioreactor (SMBR) and a simultaneous activated sludge (AS), for treating Palm Oil Mill Effluent (POME). Two lab scale units of SMBR and AS with a working volume of 24 L were operated under favorable biological conditions and minimized membrane fouling intensity. To achieve both carbonaceous and nitrogen removal, the cyclic air intermittent and dissolved oxygen control were performed into SMBR and AS with the influent flow rate about 16 L/d respectively. In terms of organic removal and membrane performance, the SMBR showed good removal efficiency to treat high strength wastewater with organic loading variation of POME. The average removal rates of TCOD, BOD, Turbidity, Color, Oil and Grease, NH3–N, TKN were 69±2, 76±2, 100±1, 37±21, 92±6, 67±4 and 75±10% respectively. Results pointed out the benefit of membranes retained totally the active compositions of biomass in each stage of development. The AS showed the limitation of sedimentation phase for sludge and oil separation. The characteristics of sludge in SMBR showed healthy floc formations and good settling after 240 h. The concentrations of COD and BOD in permeate were around 870±53 and 37±13 mg/L.


2006 ◽  
Vol 41 (5) ◽  
pp. 1038-1046 ◽  
Author(s):  
A.A.L. Zinatizadeh ◽  
A.R. Mohamed ◽  
G.D. Najafpour ◽  
M. Hasnain Isa ◽  
H. Nasrollahzadeh

2006 ◽  
Vol 41 (2) ◽  
pp. 370-379 ◽  
Author(s):  
G.D. Najafpour ◽  
A.A.L. Zinatizadeh ◽  
A.R. Mohamed ◽  
M. Hasnain Isa ◽  
H. Nasrollahzadeh

Author(s):  
Muhammad Said ◽  
Muneer ba Abbad ◽  
Siti Rozaimah Sheik Abdullah ◽  
Abdul Wahab Mohammad

The optimization of COD removal from palm oil mill effluent (POME) using the Reverse Osmosis (RO) membrane was investigated. Experimental conditions for reduce the COD value of POME were achieved successfully using the Box Behken design. The values of affecting factors (POME concentration, pH and Transmembrane pressure were optimized according to the polynomial regression model. The predicted conditions to produce lower COD values were found to be POME concentration (vol. %) =28.30, pH =10.75 and Transmembrane pressure= 0.69 kPa. The predicted of COD value was 24.137 mg/l which in good agreed with experiment value as 25.763 mg/l was obtained.


Sign in / Sign up

Export Citation Format

Share Document