scholarly journals Effect of Solvent Evaporation Time and Casting Thickness on the Separation Performance of Cellulose Acetate Butyrate Blend Membrane

Author(s):  
Darvin Manimaran ◽  
Zeinab Abbas Jawad ◽  
Chew Thiam Leng

Global warming and climate change due to greenhouse gases (GHGs) emission, mostly carbon dioxide (CO2), have induced global efforts to minimize the concentration of atmospheric CO2. To reduce the effects of this problem, membrane technology is selected for the separation of CO2 due to the energy efficiency and economic advantages exhibited. In this study, the chosen polymeric material, cellulose acetate butyrate (CAB) is optimized using a wet phase inversion method with various molecular weight and different casting conditions due to its outstanding film-forming specifications and capabilities of fabricating a defect-free layer of neat membrane. The membrane was synthesized by blending three different molecular weights (Mn) of 12,000, 30,000 and 70,000 at different casting thickness, 150 µm to 300 µm and solvent evaporation time of 3.5 to 5 min. The results of these predominant parameters were then utilized to determine a high performance CAB membrane suitable for an enhanced CO2/Nitrogen (N2) separation. Eventually, a high separation performance CAB membrane was successfully synthesized with a CO2/N2 selectivity of 1.5819 ± 0.0775 when the solvent evaporation time and casting thickness was optimized at 4.5 min and 300 µm, respectively. Through this study, an improved understanding between membrane casting conditions and membrane performance has been achieved, for future development and progress.

Author(s):  
Majed Alghamdi ◽  
Adel El-Zahhar

In this study the effects of graphene oxide (GO) nanosheets on the physicochemical properties and performances of cellulose acetate butyrate (CAB) membranes were investigated. Nanocomposite membranes were fabricated using Cand a small amount of GO in the range of 0 to 0.07 wt.%, using a conventional phase-inversion method. Membranes were characterized by different methods and their performances were tested using a dead-end filtration system. Compared with pristine Cmembrane, experimental results demonstrated an improvement in features such as hydrophilicity, permeability, salt rejection, antifouling, and stability. The results proved an increase in the porosity and pore sizes of membranes with GO addition. Furthermore, the membrane containing 0.07 wt.% of GO exhibited a low contact angle of 37? and a dramatic improvement in water flux of about 450% (from 2 to 11 L/m2 h). Moreover, it demonstrated a salt rejection of 39% for NaCl and 87% for Na2SO4, corresponding to improvements of about 144% and 93%, respectively. Furthermore, the results revealed a higher antifouling property with an 86% improvement in flux recovery and higher stability in terms of performance and thermal properties compared to CAB.


2014 ◽  
Vol 69 (9) ◽  
Author(s):  
N. M. Ismail ◽  
A. F. Ismail ◽  
A. Mustaffa

Asymmetric hybrid organic-inorganic clay mineral polyethersulfone (PES) flat sheet membranes were prepared from solution containing Cloisite15A® (C15A) in the mixture of solvent and polymer. Neat PES and MMM were prepared through dry/wet phase inversion method. The newly developed membranes were characterized by means of SEM. The effect of filler addition, evaporation time and coating protocol towards the performance of the membrane was investigated. The measurement was carried out at room temperature and the upstream pressure was 3 bar while the downstream pressure was atmospheric. Experimental results showed that selectivity for MMM fabricated with 0.25 wt% clay loading at evaporation time of 40 s is lower compared to those prepared at higher evaporation time. After coating with silicone rubber solution and heat treated, the resultant membranes exhibited selectivity enhancement of CO2/CH4 from 7.9 to 28.4 for pristine PES, while PES/C15A1 and PES/C15A2 showed a selectivity improvement of 2.29 to 18.72 and 10.24 to 33.49 each. Optimum evaporation time and appropriate coating and heat treatment have significant contribution in developing high performance MMM for gas CO2/CH4 separation.    


Sign in / Sign up

Export Citation Format

Share Document