wet phase inversion
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 2)

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 760
Author(s):  
Badar M. Alruwaili ◽  
Usman Saeed ◽  
Iqbal Ahmad ◽  
Hamad Al-Turaif ◽  
Hani Aboalkhair ◽  
...  

Currently, gas separation (GS) membranes are produced from petrochemical-based polymers, but their lifespan is severely impacting the environment. Therefore, there has recently been growing interest in developing ecofriendly biodegradable polymer-based GS membranes. This study developed a polylactic acid (PLA)/polybutylene succinate (PBS) blend composite membrane for GS using the dry/wet phase inversion technique. The influence of the multiwalled carbon nanotube (MWCNT) concentration in the PLA/PBS blend was studied by investigating tensile properties, porosity, percentage crystallinity, contact angle, and gas permeance. The obtained results demonstrate that the addition of MWCNT enhances the tensile strength, porosity, and percentage crystallinity, whereas it decreases the contact angle. The pure gas permeation was investigated at pressures of 2–4 bar at 25 °C. The gas permeation study revealed that the PLA/PBS blend with 0.5% wt. MWCNT enhanced the gas permeance and selectivity at 4 bar. The gas permeance acquired at 25 °C and 4 bar for PLA/PBS reinforced with MWCNT was highest in hydrogen followed by carbon dioxide, argon, and nitrogen. Additionally, a study of the membrane morphology illustrated the uniform dispersion of MWCNT in the PLA/PBS blend. The investigation concluded that membranes containing MWCNT are capable of separating gases at the molecular level, thereby reducing energy consumption.


2021 ◽  
Author(s):  
Amira S. Mohammed Ali ◽  
Moataz M. Soliman ◽  
Sherif H. Kandil ◽  
Shaker Ebrahim ◽  
Marwa Khalil

Abstract Herein, fabrication of cellulose acetate (CA) silica-based nanocomposite membranes via the dry-wet phase inversion procedure for the water desalination was investigated. The modified and unmodified silica nanoparticles (SNPs and MSNPs) were prepared by the sol-gel technique. The addition effect of the SNPs and MSNPs was investigated on the CA membranes properties and their performance for water separation. The CA nanocomposite membranes were characterized to study their structure, hydrophilicity, and morphology. The fabricated nanocomposite membranes showed hydrophilic surface properties. The performance of reverse osmosis (RO) membranes was measured using a crossflow RO unit. At 10 bar, The membrane with 10 mg of SNPs showed enhanced permeate water flux compared to the pristine CA membrane by 1.6 L/m 2 .hr. Increasing the SNPs in the nanocomposite membrane showed enhancement in the permeate water flux all over the operating pressure. The effect of MSNPs on the nanocomposites’ performance was lower than their counterpart in the case of adding SNPs. The membrane with 30 mg of MSNPs showed the highest permeate water flux among other nanocomposite membranes with a value of 35.7 L/m 2 .hr at 24 bar.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nur’ Adilah Abdul Nasir ◽  
Ameen Gabr Ahmed Alshaghdari ◽  
Mohd Usman Mohd Junaidi ◽  
Nur Awanis Hashim ◽  
Mohamad Fairus Rabuni ◽  
...  

Abstract Efficient purification technology is crucial to fully utilize hydrogen (H2) as the next generation fuel source. Polyimide (PI) membranes have been intensively applied for H2 purification but its current separation performance of neat PI membranes is insufficient to fulfill industrial demand. This study employs blending and crosslinking modification simultaneously to enhance the separation efficiency of a membrane. Polyethersulfone (PES) and Co-PI (P84) blend asymmetric membranes have been prepared via dry–wet phase inversion with three different ratios. Pure H2 and carbon dioxide (CO2) gas permeation are conducted on the polymer blends to find the best formulation for membrane composition for effective H2 purification. Next, the membrane with the best blending ratio is chemically modified using 1,3-diaminopropane (PDA) with variable reaction time. Physical and chemical characterization of all membranes was evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Upon 15 min modification, the polymer membrane achieved an improvement on H2/CO2 selectivity by 88.9%. Moreover, similar membrane has demonstrated the best performance as it has surpassed Robeson’s upper bound curve for H2/CO2 gas pair performance. Therefore, this finding is significant towards the development of H2-selective membranes with improved performance.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2768
Author(s):  
Amanda Grylewicz ◽  
Kacper Szymański ◽  
Dominika Darowna ◽  
Sylwia Mozia

Ultrafiltration polyethersulfone (PES) membranes were prepared by wet phase inversion. Commercial halloysite nanotubes (HNTs) in the quantities of 0.5 wt% vs. PES (15 wt%) were introduced into the casting solution containing the polymer and different solvents: N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), or 1-methyl-2-pyrrolidinone (NMP). The type of solvent influenced the membranes’ morphology and topography, as well as permeability, separation characteristics, and antifouling and antibacterial properties. The membranes prepared using DMA exhibited the loosest cross-section structure with the thinnest skin and the roughest surface, while the densest and smoothest were the DMF-based membranes. The advanced contact angles were visibly lower in the case of the membranes prepared using DMF compared to the other solvents. The highest water permeability was observed for the DMA-based membranes, however, the most significant effect of the modification with HNTs was found for the NMP-based series. Regardless of the solvent, the introduction of HNTs resulted in an improvement of the separation properties of membranes. A noticeable enhancement of antifouling performance upon application of HNTs was found only in the case of DMF-based membranes. The study of the antibacterial properties showed that the increase in surface roughness had a positive effect on the inhibition of E. coli growth.


2021 ◽  
Vol 11 (4) ◽  
pp. 1815
Author(s):  
Michał Młotek ◽  
Agnieszka Gadomska-Gajadhur ◽  
Aleksandra Sobczak ◽  
Aleksandra Kruk ◽  
Michalina Perron ◽  
...  

Materials used for medical applications (e.g., the cellular scaffold) should have not only the specific chemical composition, but the surface layer properties as well. For this reason, a method which enables an increase in the number of pores, wettability of the surface, and improvement the conditions of nutrient transportation into the membrane is being studied. The plasma of a dielectric barrier discharge was applied for the surface modification of polylactide obtained by dry or wet phase inversion. The plasma-modified surface was analyzed by contact angle measurements with water and diiodomethane. The surface free energy (SFE) was calculated by the Owens–Wendt method. The highest SFE and its polar component (67.6 mJ/m2 and 39.5 mJ/m2, respectively) were received when the process was conducted in an Ar + CO2 gas mixture with a discharge power of 20 W. The purpose of this research was to increase the wettability and porosity of the membrane’s surface. It can be concluded that the dielectric barrier discharge can effectively change the surface of the polylactide membranes, and that the structure of the modified membranes was not damaged during modification. The process of modification was easier for the membranes made by dry phase inversion. These materials had higher SFE values after the modification.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 183
Author(s):  
Mariana F. P. Graça ◽  
Duarte de Melo-Diogo ◽  
Ilídio J. Correia ◽  
André F. Moreira

Despite all the efforts that have been done up to now, the currently available wound dressings are still unable to fully re-establish all the structural and functional properties of the native skin. To overcome this situation, researchers from the tissue engineering area have been developing new wound dressings (hydrogels, films, sponges, membranes) aiming to mimic all the features of native skin. Among them, asymmetric membranes emerged as a promising solution since they reproduce both epidermal and dermal skin layers. Wet or dry/wet phase inversion, scCO2-assisted phase inversion, and electrospinning have been the most used techniques to produce such a type of membranes. Among them, the electrospinning technique, due to its versatility, allows the development of multifunctional dressings, using natural and/or synthetic polymers, which resemble the extracellular matrix of native skin as well as address the specific requirements of each skin layer. Moreover, various therapeutic or antimicrobial agents have been loaded within nanofibers to further improve the wound healing performance of these membranes. This review article provides an overview of the application of asymmetric electrospun membranes as wound dressings displaying antibacterial activity and as delivery systems of biomolecules that act as wound healing enhancers.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 265
Author(s):  
Ahmet Halil Avci ◽  
Cédric Van Goethem ◽  
Timon Rijnaarts ◽  
Sergio Santoro ◽  
Marco Aquino ◽  
...  

In this study, novel asymmetric integral cation exchange membranes were prepared by the wet phase inversion of sulfonated polysulfone (SPSf) solutions. SPSf with different degrees of sulfonation (DS) was synthesized by variation in the amount of chlorosulfonic acid utilized as a sulfonating agent. The characterization of SPSf samples was performed using FTIR and 1H-NMR techniques. SPSf with a DS of 0.31 (0.67 meq/g corresponding ion exchange capacity) was chosen to prepare the membranes, as polymers with a higher DS resulted in poor mechanical properties and excessive swelling in water. By a systematic study, the opportunity to tune the properties of SPSf membranes by acting on the composition of the polymeric solution was demonstrated. The effect of two different phase inversion parameters, solvent type and co-solvent ratio, were investigated by morphological and electrochemical characterization. The best properties (permselectivity of 0.86 and electrical resistance of 6.3 Ω∙cm2) were obtained for the membrane prepared with 2-propanol (IPA):1-Methyl-2-pyrrolidinone (NMP) in a 20:80 ratio. This membrane was further characterized in different solution concentrations to estimate its performance in a Reverse Electrodialysis (RED) operation. Although the estimated generated power was less than that of the commercial CMX (Neosepta) membrane, used as a benchmark, the tailor-made membrane can be considered as a cost-effective alternative, as one of the main limitations to the commercialization of RED is the high membrane price.


Author(s):  
Başak Keskin ◽  
Meltem Ağtaş ◽  
Türkan Ormancı-Acar ◽  
Türker Türken ◽  
Derya Y. İmer ◽  
...  

Abstract In this paper, ultrafiltration (UF) flat sheet membranes were manufactured by introducing two diverse halloysite nanotubes (HNT) size (5 μm and 63 μm) and five different (0, 0.63, 1.88, 3.13, 6.30 wt %) ratios by wet phase inversion. Some characterization methods which are contact angle, zeta potential, viscosity, scanning electron microscopy (SEM) and Young's modulus measurements were used for ultrafiltration membranes. Synthetic dye waters which were Setazol Red and Reactive Orange were used for filtration performance tests. These dye solutions were filtered in three different pH conditions and three different temperature conditions for pH and temperature resistance to understand how flux and removal efficiency change. The best water permeability results were obtained as 190.5 LMH and 192 LMH, for halloysite nanotubes (HNT) sizes of 5 μm and 63 μm respectively. The best water and dye performance of UF membrane contains 1.88% w/w ratio of HNT, which showed increased water flux and dye flux of membranes according to different HNT concentrations including ultrafiltration membranes.


Sign in / Sign up

Export Citation Format

Share Document