Spatial Multi Criteria Analysis For the Determination of Areas with High Potential Wave Energy

2013 ◽  
Vol 65 (2) ◽  
Author(s):  
K. N. Abdul Maulud ◽  
W. H. M. Wan Mohtar ◽  
O. A. Karim
Author(s):  
Jose V. Taboada ◽  
Hirpa G. Lemu

This paper describes a wave energy analysis of North Atlantic waters and provides an overview of the available resources. The analysis was conducted using a scatter diagram data combined with wave statistics and empirical parameters given by wave height and periods. Such an overview is instrumental for modelling of wave energy sources, design of wave energy converter (WEC) devices and determination of locations of the devices. Previous survey of wave energy resources widely focused on determination of the reliability on installations of WECs. Though the renewable energy source that can be utilized from the waves is huge, the innovative work in design and development of WECs is insignificant and the available technologies still require further optimization. Furthermore, the wave potential of North Atlantic waters is not sufficiently studied and documented. Closer review of the literature also shows that wave energy conversion technology, compared with other conversion machines of renewable energy sources such as wind energy and solar energy, seems still immature and most of the research and development efforts in this direction are limited in scope. The design of energy converters is also highly dictated by the wave energy resource intensity distribution, which varies from North to South hemisphere. The immaturity of the technology can be attributed to several factors. Since there are a number of uncertainties on the accuracy of wave data, the design, location and installation of WECs face a number of challenges in terms of their service life, structural performance and topological configuration. As a result, collection and assessment of wave characteristics and the wave state conditions data serve as key inputs for development of robust, reliable, operable and affordable wave energy converters. The fact that a number of variables are involved in wave distribution characteristics and the extraction of wave power, treating these variables in the design process imposes immense challenges for the design optimization and hence the optimum energy conversion. The conversion machines are expected to extract as high wave energy as possible while their structural performance is ensured. The study reported in this paper is to analyse wave data over several years of return periods with a detailed validation for wave statistics and wave power. The analysis is intended to contribute in better understanding of the wave characteristics with influencing parameters that can serve as design optimization parameters. A method is proposed to conduct a survey and analysis of the available wave energy resources and the potential at cited locations. The paper concludes that wave energy data accuracy is the baseline for project scoping, coastal and offshore design, and environmental impact assessments.


1978 ◽  
Vol 1 (16) ◽  
pp. 129 ◽  
Author(s):  
Ole Secher Madsen ◽  
Paisal Shusang ◽  
Sue Ann Hanson

In a previous paper Madsen and White (1977) developed an approximate method for the determination of reflection and transmission characteristics of multi-layered, porous rubble-mound breakwaters of trapezoidal cross-section. This approximate method was based on the assumption that the energy dissipation associated with the wave-structure interaction could be considered as two separate mechanisms: (1) an external, frictional dissipation on the seaward slope; (2) an internal dissipation within the porous structure. The external dissipation on the seaward slope was evaluated from the semi-theoretical analysis of energy dissipation on rough, impermeable slopes developed by Madsen and White (1975). The remaining wave energy was represented by an equivalent wave incident on a hydraulically equivalent porous breakwater of rectangular cross-section. The partitioning of the remaining wave energy among reflected, transmitted and internally dissipated energy was evaluated as described by Madsen (1974), leading to a determination of the reflection and transmission coefficients of the structure. The advantage of this previous approximate method was its ease of use. Input data requirements were limited to quantities which would either be known (water depth, wave characteristics, breakwater geometry, and stone sizes) or could be estimated (porosity) by the design engineer. This feature was achieved by the employment of empirical relationships for the parameterization of the external and internal energy dissipation mechanisms. General solutions were presented in graphical form so that calculations could proceed using no more sophisticated equipment than a hand calculator (or a slide rule). This simple method gave estimates of transmission coefficients in excellent agreement with laboratory measurements whereas its ability to predict reflection coefficients left a lot to be desired.


Author(s):  
Mariusz Wesołowski ◽  
Krzysztof Blacha ◽  
Piotr Barszcz

An important factor that affects the safety of flight operations is the proper management of airports, which should be based on the obtained in systematic way information about the state of the surface of the functional elements. One of the characteristic quantities of the technical condition of airport indicator is the assessment of the degree of degradation. It should be noted that the degradation is a slow process extended in time and is the lowering of the properties of the structure by external influences, which in turn generates the changes in their structure. Rating degrade surface should be conducted periodically, which period shall be estimated on the basis of information obtained from the process of the operation of aircraft. Demotions surface is determined on the basis of the type and quantity survey found damage and made repairs. The basis for evaluating the degree of surface degradation is to obtain data from surveys conducted using the method of visual and inventory of them. Research by visual method, despite its apparent simplicity, it is difficult to implement. Qualification of damage or repairs to the appropriate group is often not clear, and therefore the inventory process is described in the documentation of quality management system. The multi-criteria analysis is a method of evaluating the weighted supporting estimating the degree of degradation airfield pavements based on data obtained through inspections performed. Its base is included in the determination of a number of criteria for the selection variant, taking into account different weights to each criterion. The value of the indicator characterizing the degree of surface degradation in relation to estimated criteria allows you to schedule the necessary resources needed to carry out repairs and rational planning of repairs.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Siroos Karimzadeh ◽  
Mohammad Mehdi Taghizadeh

Abstract Determination of the high potential of dust emission is a requisite affair in the management of dusts emission and as well as avoiding its risks. Wind tunnel is among the most important approaches in the study of areas having high potential in emitting dusts. Extensive dried playas and desert areas require the making of low-cost, simple, and car-portable tunnels capable of presenting comparable data of various areas even supposing not having enough precision in the model of real wind motion. In this study, we first engaged in making a car-portable tunnel with a primarily semicircle section of 38 cm height, 50 cm diameter, and 110 cm length. A fan and key appliance with the ability to change speed were used along with a simple transformer launched with car battery. Then, concentration of the pm10 dusts was measured in the various wind speeds of 1, 2.5, 4, 5.5, and 7 m/s by the help of anemometer and digital equipments. The study of Bakhtegan playa was done, as the methodology of handling with this tunnel, in 35 positions, and zoning of the results was performed via ArcGIS software. Depending on the destructibility of the shell by wind, the areas under study were categorized as low potential (34%), medium potential (37%), and high potential (29%) in emitting dusts. The results of zoning spotted the high-potential areas on the map. The usage of small tunnels, as in the present model, may be applied in order for the low-cost and fast studies of vast areas to the purpose of playas management.


1983 ◽  
Vol 38 (9) ◽  
pp. 1010-1014 ◽  
Author(s):  
W. Stahl ◽  
H. Dreizler ◽  
M. Hayashi

Abstract We present an analysis of the rotational spectrum of ethylchloride-35Cl in the ground state. The 35Cl-hfs analysis was extended and the barrier to internal rotation determined from narrow splittings of high J-transitions.


2018 ◽  
Vol 122 ◽  
pp. 654-664 ◽  
Author(s):  
J.P.P.G. Lopes de Almeida ◽  
B. Mujtaba ◽  
A.M. Oliveira Fernandes

2015 ◽  
Vol 760 ◽  
pp. 615-620
Author(s):  
Alexandru Stefan Leonte ◽  
Anișor Nedelcu ◽  
Razvan Gabriel Dragan

The present paper presents an optimization model for quality control of industrial products by using two non-destructive techniques (NDT): infrared termography and ultrasonic methods. The main purpose it is to determinate the best analyzing method using multi-criteria analysis by taking into account the results that outcome from the two non-destructive evaluations. There have been studied defects like: internal defects and surface defects. Therewith were taking into consideration: safety, efficiency of the method and the cost of the equipment used in controlling the product. For this study it was created a concrete slab with embedded defects which had different depths. The sample was tested using active thermography and impact echo methods and the results were studied and integrated in an multi-criteria analysis to reveal the best method for this case.


2009 ◽  
Vol 34 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Ana Nobre ◽  
Miguel Pacheco ◽  
Raquel Jorge ◽  
M.F.P. Lopes ◽  
L.M.C. Gato

Sign in / Sign up

Export Citation Format

Share Document