Influence of Inorganic Additives on the Performance of Polysulfone Ultrafiltration Membrane

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Zaini Yunos ◽  
Zawati Harun ◽  
Hatijah Basri ◽  
Mohd Fikri Shohur ◽  
Mohd Riduan Jamalludin ◽  
...  

The influence of zinc oxide and silver (I) oxide in polysulfone ultrafiltration membrane was studied. The membranes were prepared via phase inversion method. The morphology, surface roughness, hydrophillicity and antibacterial properties of membrane were investigated using SEM, AFM and contact angle device consecutively. It was found that membrane with zinc oxide additive has excellent pure water flux as compared to silver (I) oxide. However silver (I) oxide has better humic acid rejection due to the tradeoff effect. SEM-EDX for PSf/silver (I) oxide reveals that the accumulation of silver on top area in cross section of membrane while for zinc oxide seems more concentrated on the bottom. Interestingly, the AFM results support the previous result when PSf/zinc oxide showed better surface roughness on the top of the membrane. Eventhough zinc oxide is known one of antibacterial material, however from qualitative experiment using disc diffusion test (e-coli), there is no inhibition ring for PSf/zinc oxide membrane as compared to membrane with PSf/silver (I) oxide membrane which shows excellence inhibition ring.

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Zaini Yunos ◽  
Zawati Harun ◽  
Hatijah Basri ◽  
Mohd Fikri Shohur ◽  
Mohd Riduan Jamalludin ◽  
...  

The effects of different zinc oxide concentration on morphology, contact angle, surface roughness and rejection towards humic acid in polysulfone membrane were investigated. Flatsheet ultrafiltration membrane were prepared by using polysulfone as based polymer, polyethylene glycol as  pore forming agent, zinc oxide as manipulated additive and TAP as compatibilizer. In this study, N, methyl-2-pyrrolidone were used as solvent and water as non solvent. The membrane were prepared via phase inversion method. Results showed that pure water flux was enhanced by the presence of zinc oxide up to 1 wt% and tend to decrease beyond this concentration. The increased pure water flux was attributed to the increase in hydrophilicity and  surface roughness of membrane according to contact angle and AFM measurement. The rejection test with humic acid as solute revealed that by increasing zinc oxide concentration, rejection increases up to 98% at 2 wt% of zinc oxide. Therefore polysulfone/zinc oxide in this study can provide potential application for river water treatment which consist high humic acid concentration.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Zawati Harun ◽  
Mohd Riduan Jamalludin ◽  
Hatijah Basri ◽  
Muhamad Fikri Shohur ◽  
Nurafiqah Rosman ◽  
...  

This study investigates the effects of synthetic silica(SiO2)with different weight percentage concentrations on the morphology and performance of the polysulfone (PSf) and polyethelene glycol (PEG) based membrane ultrafiltration (UF). Phase inversion method was used to prepare PSf/PEG ultrafiltration (UF) flatsheet membrane. SiO2 and N-Methyl 2 Pyrrolidone (NMP) were used as an additive and solvent respectively. The fabricated membrane was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and the performances of the membranes were measured in term of pure water flux by using distilled water and solute rejection at different wastewater concentration at 50%, 75% and 87.5%. The result showed that the addition of 2% silica in the dope solution increased the permeation in terms pure water flux and the best rejection with 62 Lm-2 h-1 and 89% (at 87.5 % waste water dilution) respectively


2021 ◽  
Vol 10 (1) ◽  
pp. 538-546
Author(s):  
Yanjun Lu ◽  
Yuxuan Ma ◽  
Tong Yang ◽  
Jifeng Guo

Abstract Modified polyvinylidene fluoride (PVDF) membranes were prepared by the phase inversion method via blending in situ formed nanosilver (Ag) and nanozirconium dioxide (ZrO2). Scanning electron microscopy of the membranes revealed that the surface pore size of the membranes was increased and distributed widely with the addition of modified nanosilver (Ag) and nanozirconium dioxide (ZrO2). The pores of the membrane were reduced due to excessive modification of the material when the content of zirconium dioxide was increased to 0.4%. XRD characterization showed that in situ synthesis of nanosilver (Ag) and nanozirconium dioxide (ZrO2) had been successfully blended in the membranes. The contact angle of the modified membrane ranged from 82.72° to 67.37°, which showed that the hydrophilic properties of the membrane were improved. The pure water flux of the modified membrane increased from 28.43 to 143.2 L/m2 h, indicating that the hydrophilicity of the modified membrane was enhanced significantly. The flux recovery rate of the modified membrane was obviously increased in the fouling experiment with BSA as the source of organic pollutants. The antimicrobial contamination of the membrane was greatly enhanced with the E. coli microbial contamination experiment.


2014 ◽  
Vol 981 ◽  
pp. 891-894 ◽  
Author(s):  
Yun Wei Guo ◽  
Wei Wei Cui ◽  
Wen Hua Xu ◽  
Yang Jiang ◽  
Hui Hui Liu ◽  
...  

This work describes the preparation and the properties of poly(vinylidene fluoride) (PVDF) porous membranes. The porous membrane was prepared using phase-inversion method by adding hydrophilic polyvinylpyrrolidone (PVP) as hole-agent. The contrastive analysis of membrane characterizations between the membrane no PVP added and the membrane added PVP were carried out by optical microscopy analysis, scanning electron microscopy, porosity, pure water flux and water contact angle. The results showed that adding PVP can induce the building of pore structure, increase the surface roughness and hydrophilicity of PVDF membrane, and then enhance its pure water flux.


2018 ◽  
Vol 2017 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Sevgi Güneş-Durak ◽  
Türkan Ormancı-Acar ◽  
Neşe Tüfekci

Abstract In this study, four different membranes were fabricated by using polyetherimide and polyacrylonitrile polymers, N-methyl-2-pyrrolidone and polyvinylpyrrolidone (PVP) via phase inversion method to improve the membrane performance in fruit juice wastewater (FJWW) treatment. The addition of PVP to the casting solution increased membrane hydrophilicity, water content, contact angle, porosity, Fourier transform infrared spectroscopy peaks, membrane thickness, average roughness and viscosity of cast solutions compared to the bare membrane. It can be said that the addition of a lower polymer concentration and PVP intensively increases the pure water flux of the membrane. However, as the flux increased, a small decrease in FJWW rejection was observed.


2018 ◽  
Vol 55 (1) ◽  
pp. 95-98 ◽  
Author(s):  
Laurentia Geanina Tiron ◽  
Stefan Catalin Pintilie ◽  
Andreea Liliana Lazar ◽  
Maria Vlad ◽  
Stefan Balta ◽  
...  

Water is an important element of life, while every industry in its processes uses an important amount of water. Following processes, the water is contaminated and requires water treatment technologies. Unconventional methods to wastewater treatment, in the last years, use membrane technology as one of the most reliable processes for contaminants removal. In this article, the influence of the different concentrations of polysulfone (PSf) on the polymeric membranes properties was studied. These membranes were obtained through phase inversion method and with different polymer concentrations: 23, 25, 27 and 30 wt.%. The performance of the membranes was studied by pure water flux, permeability and retention. It has been observed that by increasing the polymer concentration, the pure water flux and the permeability will decrease. Retention was determined using methylene blue, which is one of the most utilized dye from industry and it could be observed that by increasing the polymer concentration the retention degree of the pollutant also increases. In order to explain the evolution of membrane permeability at different polymer concentrations, surface hydrophilicity by contact angle method and cross-section SEM imaging were used.


2018 ◽  
Vol 24 (7) ◽  
pp. 50
Author(s):  
Mohammed Amer Abdul-Majeed

In this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The antibacterial property of modified membrane and the influence of silver nanoparticles on pure water flux of composite membrane at 0.2 Mpa were also verified. The experimental results obtained concluded that the composite membrane properties have been improved by the integration of Ag nanoparticles. The grafted membrane with silver nanoparticles has shown a clear ability to inhibit the growth of E. coli, Pseudomonas Aeruginosa, and Bacillus Cereus. While the clean PVDF membrane (without any additives) did not show any effect of preventing the growth of these species of bacteria referred to above. The pure water flux, porosity and the mean pore size of composite membrane can reach 261.8 L/m2 h, 85.4%, and 0.0206 µm, respectively, and it was much more than that of pure PVDF membrane.  


2012 ◽  
Vol 562-564 ◽  
pp. 3-6
Author(s):  
Jing Zhang ◽  
Zhan Wang ◽  
Xiao Ye ◽  
Wen Juan Li ◽  
Long Yue Shi ◽  
...  

VC-co-VAc-OH material was used to prepare flat-sheet membranes on the non-woven fabrics via phase inversion method. And the membrane preparation conditions(polymer content, the content of additive, environmental temperature, relative humidity, evaporation time, coagulation temperature, coagulation time, immersing time of non-woven fabrics in solvent, and exposure time of non-woven fabrics in air)were discussed systemically by orthogonal method. Finally, the membrane prepared under the optimum condition showe higher pure water flux (287.9 ml•cm-2•h-1) and good retention of Bovine serum albumin (BSA) (87.4 %).


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Fikri Shohur ◽  
Zawati Harun ◽  
W. J. Lau ◽  
Muhamad Zaini Yunos ◽  
Mohd Riduan Jamalludin

One of the big challenges in developing a good asymmetric membrane  is macrovoid formation that leads to reduction of rejection value.  The most common method to reduce or suppress macrovoid formation is by addition of controlled solvent to the coagulation bath. Therefore, the effect of difference coagulants based on dissolved KCl (monovalent) and dissolved Na2SO4(divalent) with different concentration onto asymmetric Polysulfone (PSf) ultrafiltration membrane was investigated in this work. The PSf ultrafiltration membranes were prepared by using phase inversion method using these two immerse aqueous solutions. The performances of membranes were evaluated via pure water flux (distilled water) and solute rejection (humic acid). Results on the cross section revealed that the structure of membrane show a straight pattern of bigger finger-like pore structure from top to bottom layer tend to reduce with at the same time the diameter of finger-like pore structure  also increased, as salt medium of coagulant increases. These obviously shown by permeation values for both salt mediums were higher compared to without salt coagulant. This reduction of finger-like structure at bottom layer occurred along together with the formation of sponge shape structure. The growth of thick sponge shape is strongly influence by kinetic phase inversion of salt coagulant that also creates resistance to permeation mechanism. However the intense salt coagulant medium can cause the bigger sponge structure that will slightly reduce rejection and increase the permeation.  This was proved by the rejection of KCl medium started to increase at 1-3% but slightly reduced at 4%. Based on the result analysis demonstrated that the ideal membrane with highest rejection and good permeation values was membrane immersed into 1% Na2SO4 coagulation medium.


2012 ◽  
Vol 528 ◽  
pp. 210-213 ◽  
Author(s):  
Xuan Wang ◽  
Hao Long Bai ◽  
Li Ping Zhang

Nanocrystalline cellulose was used to blend with polysulfone to improve the hydrophicility and mechanical properties of PS hollow fiber ultrafiltration membrane. The method of dry-jet/wet-spining was adopted to form the hollow fiber by the mechanism of phase-inversion. In addition, the content of NCC was increased gradually from 0% to 1 wt% to examin the permeation flux, rejection ratio of bovine serum albumin(BSA) and mechanical strength of PS hollow-fiber. We find that the pure water flux was soared when NCC content was increased. The tensile strength and elongation at break were also detected and calculated. The results indicated that the properties of PS hollow-fiber membrane with appropriate NCC content were enhanced. The hollow fiber membranes were also observed with scaning electron microscopy(SEM) to explore the porous structure


Sign in / Sign up

Export Citation Format

Share Document