The Effects of Nanocrystaline Cellulose on Polysulfone Hollow-Fiber Ultrafiltration Membrane

2012 ◽  
Vol 528 ◽  
pp. 210-213 ◽  
Author(s):  
Xuan Wang ◽  
Hao Long Bai ◽  
Li Ping Zhang

Nanocrystalline cellulose was used to blend with polysulfone to improve the hydrophicility and mechanical properties of PS hollow fiber ultrafiltration membrane. The method of dry-jet/wet-spining was adopted to form the hollow fiber by the mechanism of phase-inversion. In addition, the content of NCC was increased gradually from 0% to 1 wt% to examin the permeation flux, rejection ratio of bovine serum albumin(BSA) and mechanical strength of PS hollow-fiber. We find that the pure water flux was soared when NCC content was increased. The tensile strength and elongation at break were also detected and calculated. The results indicated that the properties of PS hollow-fiber membrane with appropriate NCC content were enhanced. The hollow fiber membranes were also observed with scaning electron microscopy(SEM) to explore the porous structure

2012 ◽  
Vol 152-154 ◽  
pp. 574-578 ◽  
Author(s):  
Ping Lan ◽  
Wei Wang

Polyethersulfone (PES) hollow fiber membranes have been widely used in many fields, such as ultrafiltration, microfiltration, reverse osmosis, liquid/liquid or liquid/solid separation, gas separation, hemodialysis, and so on. In this paper, the sheet PES hollow fiber membranes were prepared. The morphology and performance of membranes can be controlled. By studying the influence of the compositions and conditions on the morphology and performance of PES hollow fiber membrane, the relationship of morphology and performance of the membrane is acquired. The additives were used such as glycerol, BuOH and PEG. In addition, immerse phase inversion was used as membranes preparation method. The morphology of the membrane was controlled by changing kinds of additive, concentration of additive and so on. It was found that the membrane morphologies were changed by additive obviously. Porosity , pure water flux, scanning electron microscopy(SEM) were used to characterize the morphology and performance of the membranes.


2012 ◽  
Vol 476-478 ◽  
pp. 2389-2392
Author(s):  
Ping Lan ◽  
Wei Wang ◽  
Jian Da Cao

Polyethersulfone (PES) hollow fiber membranes have been widely used in many fields, such as ultrafiltration, microfiltration, reverse osmosis, liquid/liquid or liquid/solid separation, gas separation, hemodialysis, and so on. In this paper, the sheet PES hollow fiber membranes were prepared and post-processing of membranes were studied. Suction method and pressing hot water method can both increase pure water flux of membrane. Suction method is more efficient and with a smaller time to increase pure water flux. After membrane was soaked into glycerol/water solution, pure water flux of membrane increased greatly and the length shrinkage ratio of the membrane was more smaller.


2021 ◽  
Vol 8 (2) ◽  
pp. 11-20
Author(s):  
Abdullah Adnan Abdulkarim ◽  
Yosra Mohammed Mahdi ◽  
Haider Jasim Mohammed

Polyethersulfone/zinc oxide mixed matrix hollow fiber membrane was fabricated using dry/wet phase inversion method. Zinc oxide nanoparticles (2 wt.%) were dispersed in N,N-dimethylacetamide (DMAc) solvent in the present of polyvinylepyrrolidene. The dope solution speed and take up speed was similar with performing the spinning process at room temperature. The produced membranes were characterized using scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier transform infrared (FTIR) analysis. Membrane performance was evaluated using pure water flux (PWF), relative flux ration (RFR), and total organic carbon (TOC) removal efficiency. From SEM analysis, it was found that the nanoparticles were well dispersed in the polymeric matrix. From AFM results, it was observed that the modified membrane has higher surface roughness. The PWF of the modified membrane was enhanced, while the RFR showed to increase due to rougher membrane surface. The NOM remaoval of PES/ZnO membrane was higher than that of PES membrane and reached to 27% compared to only 16.9 % for pristine PES.


2011 ◽  
Vol 194-196 ◽  
pp. 2245-2248
Author(s):  
Yi Liang ◽  
Bo Wen Cheng ◽  
Jun Song ◽  
Xiu Jie Ji ◽  
Fei Lu ◽  
...  

Basing on a L-S phase inversion method, cellulose hollow fiber membranes were spinned using room temperature ionic liquid 1-allyl-3-methylimidazolium chloride ([Amim]Cl) as solvent. The concentration of cellulose/[Amim]Cl solutions (dope) was varied from 6 to 9wt% by an increment of 1wt%. Effects of the dope concentration on the hollow fiber membranes structure and properties were investigated. Inner- and outer- surfaces morphology of the prepared membranes were observed using field emission scanning electron microscope (FESEM). Besides, various properties of the membranes, including apparent viscosity, pure water flux (PWF), retention rate (Rt), equilibrium water content (EWC), ultimate tensile strength (UTS) and elongation at break (Eb) were also tested. The results induced that, with the increase of dope concentration, the both surfaces showed more regular. Pure water flux and equilibrium water content of the membranes decreased with a increasing dope concentration, properties of retention rate, ultimate tensile strength and elongation at break showed a increased tendency oppositely.


Author(s):  
Zhong Sheng Tai ◽  
Mohd Hafiz Dzarfan Othman ◽  
Azeman Mustafa ◽  
Mohd Irfan Hatim Mohamed Dzahir ◽  
Siti Khadijah Hubadillah ◽  
...  

2011 ◽  
Vol 480-481 ◽  
pp. 201-206
Author(s):  
Li Guo Wang ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
Wen Juan Liu ◽  
Shi Qi Guo ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated via orthogonal test, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then hydrophilic PVDF membranes were characterized in terms of breaking strength, breaking elongation, rupture pressure, pure water flux and rejection. The fouling properties and the conditions of acrylic acid grafted onto PVDF were also examined. The results showed that acrylic acid had been grafted onto PVDF, the breaking strength and rupture pressure improved greatly, and the fouling properties were better than PS hollow fiber UF membrane.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  


RSC Advances ◽  
2018 ◽  
Vol 8 (14) ◽  
pp. 7800-7809 ◽  
Author(s):  
Sheng-Hui Liu ◽  
Min Liu ◽  
Zhen-Liang Xu ◽  
Yong-Ming Wei

A novel antifouling polyethersulfone (PES) hollow fiber membrane was modified by the addition of bisphenol sulfuric acid (BPA-PS) using a reverse thermally induced phase separation (RTIPS) process.


2018 ◽  
Vol 19 (4) ◽  
pp. 1279-1285
Author(s):  
Q. Y. Zhang ◽  
Q. An ◽  
Y. G. Guo ◽  
J. Zhang ◽  
K. Y. Zhao

Abstract To enhance the anti-fouling and separating properties of polyvinylidene fluoride (PVDF) membranes, an amphiphilic copolymer of methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid, poly(MMA-co-AMPS), was designed and synthesized. Through a phase-inversion process, the poly(MMA-co-AMPS) were fully dispersed in the PVDF membrane. The properties of membrane including the surface and cross-section morphology, surface wettability and fouling resistance under different pH solutions were investigated. Compared to the unmodified PVDF membranes, the contact angles of modified PVDF membranes decreased from 80.6° to 71.6°, and the pure water flux increased from 54 to 71 L·m−2·h−1. In addition, the hybrid PVDF membrane containing 0.5 wt% copolymers demonstrated an larger permeability, better fouling resistance and higher recovery ratio via pure water backlashing, when it was compared with the other blend membranes, and the virgin one in the cyclic test of anti-fouling. The modified membranes with the copolymers possessed an outstanding performance and may be used for further water treatment applications.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Fikri Shohur ◽  
Zawati Harun ◽  
W. J. Lau ◽  
Muhamad Zaini Yunos ◽  
Mohd Riduan Jamalludin

One of the big challenges in developing a good asymmetric membrane  is macrovoid formation that leads to reduction of rejection value.  The most common method to reduce or suppress macrovoid formation is by addition of controlled solvent to the coagulation bath. Therefore, the effect of difference coagulants based on dissolved KCl (monovalent) and dissolved Na2SO4(divalent) with different concentration onto asymmetric Polysulfone (PSf) ultrafiltration membrane was investigated in this work. The PSf ultrafiltration membranes were prepared by using phase inversion method using these two immerse aqueous solutions. The performances of membranes were evaluated via pure water flux (distilled water) and solute rejection (humic acid). Results on the cross section revealed that the structure of membrane show a straight pattern of bigger finger-like pore structure from top to bottom layer tend to reduce with at the same time the diameter of finger-like pore structure  also increased, as salt medium of coagulant increases. These obviously shown by permeation values for both salt mediums were higher compared to without salt coagulant. This reduction of finger-like structure at bottom layer occurred along together with the formation of sponge shape structure. The growth of thick sponge shape is strongly influence by kinetic phase inversion of salt coagulant that also creates resistance to permeation mechanism. However the intense salt coagulant medium can cause the bigger sponge structure that will slightly reduce rejection and increase the permeation.  This was proved by the rejection of KCl medium started to increase at 1-3% but slightly reduced at 4%. Based on the result analysis demonstrated that the ideal membrane with highest rejection and good permeation values was membrane immersed into 1% Na2SO4 coagulation medium.


Sign in / Sign up

Export Citation Format

Share Document