HYDROGEN PRODUCTION FROM PHENOL STEAM REFORMING OVER Ni-Co/ZrO2 CATALYST: EFFECT OF CATALYST DILUTION

2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Walid Nabgan ◽  
Tuan Amran Tuan Abdullah ◽  
Ramli Mat ◽  
Bahador Nabgan ◽  
Umi Aisah Asli ◽  
...  

This study looked into the hydrogen production from phenol steam reforming over Zirconia (ZrO2)-supported nickel-cobalt catalysts diluted with silicon carbide (SiC). The objective of this study is to obtain the effect of catalyst dilution on hydrogen production and the phenol conversion in various SiC dilutions. The catalysts were prepared by impregnation method and their performance tests were carried out in a micro fixed bed reactor at atmospheric pressure and 800 °C temperature, feed flow rate 0.36 mL/min, weight of catalyst 0.2 g, and dilution range of 0.05 to 0.35 g (1:0 to 1:1.75). The results showed that the catalyst dilution does not affect much on the catalyst activity toward phenol conversion. However, it does improve the conversion of phenol with the presence of SiC. The maximum conversion was at 0.3 g (1:1.5) SiC dilution, which was of 98.9 % and 0.6 mole fraction of hydrogen. 

2014 ◽  
Vol 493 ◽  
pp. 39-44 ◽  
Author(s):  
Tuan Amran Tuan Abdullah ◽  
Walid Nabgan ◽  
Mohd Johari Kamaruddin ◽  
Ramli Mat ◽  
Anwar Johari ◽  
...  

Catalytic steam reforming of acetic acid using bimetallic catalysts of 5 wt.% nickel and 5 wt.% cobalt supported on Lanthanum (III) oxide (La2O3) for hydrogen production was investigated in a micro fixed bed reactor. The reactor was of quartz tube with a 10 mm inside diameter. The effect of catalyst dilution on the reaction was studied. Silicon carbide was used as the dilution material. The experiments were conducted at atmospheric pressure and temperatures ranging from 500 to 700°C. The complete conversion of acetic acid to product gases has been observed at 550°C and 700°C for diluted and non-diluted catalysts respectively. It shows that catalyst dilution had a profound effect on the conversion of acetic acid at low temperature (550°C) whilst high temperature of 700°C was required for the non-diluted catalyst. The product gas distributions are similar when using both diluted and non-diluted catalysts.


2012 ◽  
Vol 550-553 ◽  
pp. 558-562
Author(s):  
Qi Wang ◽  
Long Guo ◽  
Xin Bao Li

Ethanol was selected as a model compound of bio-oil. Pd/HZSM-5 catalyst with 5%wt Pd was prepared by wet impregnation method. The steam reforming experiment for hydrogen production was carried out on a fixed bed reactor. The carbon conversion, carbon selectivity of product gas and H2 yield was calculated according the experimental resultsl. It has been found that the best performance was obtained at T=700°C, S/C=9.2 and GC1HSV=346h-1. At this condition, the hydrogen yield and potential hydrogen yield can be as high as 58.1% and 84.3%. The results show that the addition of Pd to HZSM-5 can improve the reforming performance and increase the hydrogen yield.


2014 ◽  
Vol 699 ◽  
pp. 504-509
Author(s):  
Hafizah Abdul Halim Yun ◽  
Ramli Mat ◽  
Tuan Amran Tuan Abdullah ◽  
Mahadhir Mohamed ◽  
Anwar Johariand Asmadi Ali

The study focuses on hydrogen production via glycerol steam reforming over copper and nickel loaded on HZSM-5 zeolite based catalyst. The catalysts were prepared by using different loading amount of copper (0-10wt%) and nickel (0-10wt%) on HZSM-5 zeolite catalysts through wet impregnation method and was characterized by X-Ray Diffraction (XRD). The performances of catalysts were evaluated in terms of glycerol conversion and hydrogen production at 500°C using 6:1 of water to glycerol molar ratio (WGMR) in a tubular fixed bed reactor. All the catalysts had achieved more than 85% of glycerol conversion except that of 5%Cu loaded on HZSM-5 catalyst. The addition of nickel into 5% Cu/HZSM-5 catalyst had increased the hydrogen yield. Similar trend was observed when copper was added into Ni/HZSM-5 catalyst but using copper loaded on HZSM-5 alone was unable to produce hydrogen compared to using nickel catalyst alone. It showed that copper acted as a promoter for hydrogen production. It was established that a 5wt% of Cu with 10wt% of Ni loaded on HZSM-5 catalyst showed significant improvement in terms of hydrogen yield and gaseous product compositions at selected operating conditions.


Author(s):  
Chen-Bin Wang ◽  
Siao Wun Liu ◽  
Kuan Fu Ho ◽  
Hsin Hua Huang ◽  
Chih Wei Tang ◽  
...  

Hydrogen production through steam reforming of ethanol (SRE) over the Ca-modified Co/SBA-15 catalysts was studied herein to evaluate the catalytic activity, stability and the behavior of coke deposition. The Ca-modified SBA-15 supports were prepared from the Ca(NO3)2·4H2O (10 wt%) which was incorporated to SBA-15 by incipient wetness impregnation (assigned as Ca/SBA-15) and direct hydrothermal (assigned as Ca-SBA-15) method. The active cobalt species from the Co(NO3)2·6H2O (10 wt%) was loaded to SiO2, SBA-15 and modified-SBA-15 supports with incipient wetness impregnation method to obtain the cobalt catalysts (named as Co/SiO2, Co/SBA-15, Co-Ca/SBA-15 and Co/Ca-SBA-15, respectively). The prepared catalysts were characterized by using X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and BET. The catalytic performance of the SRE reaction was evaluated in a fixed-bed reactor. The results indicated that the Co/Ca-SBA-15 catalyst was preferential among these catalysts and the ethanol can be converted completely at 375 °C. The hydrogen yield (YH2) approached 4.76 at 500 °C and less coke deposited. Further, the long-term stability test of this catalyst approached 100 h at 500 °C and did not deactivate.


2013 ◽  
Vol 10 (2) ◽  
Author(s):  
Ali Ebshish ◽  
Zahira Yaakob ◽  
Y. H. Taufiq-Yap ◽  
Ahmed Bshish ◽  
Abdulmajid Shaibani

In this work, catalytic steam reforming of glycerol for hydrogen production was performed over Ce/Al2O3 and Pd/Al2O3 catalysts prepared via the impregnation method. The catalysts were characterized by scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), BET surface area, and X-ray diffraction (XRD). Two sets of catalytic reactions were conducted, one comparing 1% Pd/Al2O3 to 1% Ce/Al2O3 and the second comparing 1% Ce/Al2O3 loading to 10% Ce/Al2O3 loading. All catalytic reactions were performed using a fixed-bed reactor operated at 600 °C and atmospheric pressure. Aglycerol–water mixture at a molar ratio of 1:6 was fed to the reactor at 0.05 ml/min. In the first set of experiments, Pd/Al2O3 exhibited higher hydrogen productivity than Ce/Al2O3. A maximum hydrogen yield of 56% and a maximum selectivity of 78.7% were achieved over the Pd/Al2O3 catalyst. For the second set of experiments, the results show that the reaction conversion increased as the cerium loading increased from 1% to 10%. A total average hydrogen yield of 28.0% and a selectivity of 45.5% were obtained over 1% Ce/Al2O3, while the total average hydrogen yield and selectivity were 42.2% and 52.7%, respectively, for 10% Ce/Al2O3.


Fuel ◽  
2016 ◽  
Vol 183 ◽  
pp. 170-176 ◽  
Author(s):  
Bo Jiang ◽  
Binlin Dou ◽  
Kaiqiang Wang ◽  
Yongchen Song ◽  
Haisheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document