scholarly journals Mixed convection of micropolar fluid on a permeable stretching surface of another quiescent fluid

2020 ◽  
Vol 16 (4) ◽  
pp. 487-492
Author(s):  
Nurazleen Abdul Majid ◽  
Nurul Farahain Mohammad ◽  
Abdul Rahman Mohd Kasim ◽  
Sharidan Shafie

In recent decades, micropolar fluid has been one of the major interesting research subjects due to the numerous applications such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid. However, the behavior of micropolar fluid flow over a permeable stretching surface of another quiescent fluid with a heavier density of micropolar fluid under the condition of mixed convection is still unknown. Thus, the current work aims to investigate numerically the mixed convection of micropolar fluid flow over a permeable stretching surface of another quiescent fluid. In this research, the similarity transformation is implemented to reduce the boundary layer governing equations from partial differential equations to a system of nonlinear ordinary differential equations. Then, this model is solved numerically using shooting technique with Runge-Kutta-Gill method and applied in Jupyter Notebook using Python 3 language. The behavior of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed.

2018 ◽  
Vol 388 ◽  
pp. 344-349
Author(s):  
D.V. Jayalakshmamma ◽  
P.A. Dinesh ◽  
D.V. Chandrashekhar

The numerical study of axi-symmetric, steady flow of an incompressible micropolar fluid past an impervious sphere is presented by assuming uniform flow far away from the sphere. The continuity, linear and angular momentum equations are considered for incompressible micropolar fluid in accordance with Eringen. The governing equations of the physical problem are transformed to ordinary differential equation with variable co-efficient by using similarity transformation method. The obtained differential equation is then solved numerically by assuming the shooting technique. The effect of coupling and coupling stress parameter on the properties of the fluid flow is studied and demonstrated by graphs.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Nurazleen Abdul Majid ◽  
Nurul Farahain Mohammad ◽  
Abdul Rahman Mohd Kasim ◽  
Sharidan Shafie

In this paper, the problem of forced convection flow of micropolar fluid of lighter density impinging orthogonally on another heavier density of micropolar fluid on a stretching surface is investigated. The boundary layer governing equations are transformed from partial differential equations into a system of nonlinear ordinary differential equations using similarity transformation and solved numerically using dsolve function in Maple software version 2016. The velocity, microrotation and temperature of micropolar fluid are analyzed. It is found that both upper fluid and lower fluid display opposite behaviour when micropolar parameter K various with strong concentration n = 0, Pr = 7 and stretching parameter lambda = 0.5. The results also show that stretching surface exert the force that increasing the velocity of micropolar fluid.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


Author(s):  
Degavath Gopal ◽  
Hina Firdous ◽  
Salman Saleem ◽  
Naikoti Kishan

This paper represents steady two-dimensional boundary layer flow of micropolar fluid flow with impact of convective heat transfer and buoyancy force investigated numerically. The shrinking velocity has been expected to fluctuate linearly with the existence of a fixed point on the sheet. With the assistance of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations; these nonlinear ODEs are solved numerically by using the variational finite element method. The current numerical results are obtained from the variational finite element method and compared with the previously published literature work, with which it exists in good agreement. The impact of the flow monitoring parameters on velocity, microrotation and temperature profiles is examined graphically and discussed. The skin friction coefficient and Nusselt numbers are impacts from adjusting various values of the physical parameters and relevant features which are studied.


2019 ◽  
Vol 7 (4) ◽  
pp. 198-205
Author(s):  
Nurazleen Abdul Majid ◽  
Nurul Farahain Mohammad ◽  
Abdul Rahman Mohd Kasim ◽  
Mohd Rijal Ilias ◽  
Sharidan Shafie

2018 ◽  
Vol 28 (9) ◽  
pp. 1994-2011 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Shashikant A.

Purpose The purpose of this paper is to consider the influence of slip flow and thermal jump and to investigate its effects on unsteady mixed convection along an exponentially stretching surface. It is also intended to explore the influence of suction/injection and volumetric heat source/sink on the fluid flow. Design/methodology/approach The assumed problem is modelled into governing equations which are dimensional non-linear partial differential equations in nature. To obtain solutions, initially the governing equations were made non-dimensional by the suitable non-similar transformations. Then, the dimensionless non-linear partial differential equations are linearized with the aid of Quasilinearization technique. The so obtained equations are discretized by the implicit finite difference method. Findings The detailed analysis of the considered problem displays that the non-similarity variable reduces the velocity and temperature profiles. For higher values of mixed convection parameter, the magnitude of velocity profile as well as the Nusselt number increase. The unsteady variable diminishes the fluid flow. The higher values of velocity ratio parameter reduce the skin-friction coefficient. Further, the magnitude of skin-friction coefficient and heat transfer rate are to minimize for increasing values of partial slip and thermal jump parameters, respectively. Volumetric heat source and injection parameters are to rise the flow behavior within the momentum and thermal boundary layers significantly. Originality/value To the best of authors’ knowledge, no such investigation has been found in the literature.


Sign in / Sign up

Export Citation Format

Share Document