scholarly journals Computing isogenies between abelian varieties

2012 ◽  
Vol 148 (5) ◽  
pp. 1483-1515 ◽  
Author(s):  
David Lubicz ◽  
Damien Robert

AbstractWe describe an efficient algorithm for the computation of separable isogenies between abelian varieties represented in the coordinate system given by algebraic theta functions. Let A be an abelian variety of dimension g defined over a field of odd characteristic. Our algorithm comprises two principal steps. First, given a theta null point for A and a subgroup K isotropic for the Weil pairing, we explain how to compute the theta null point corresponding to the quotient abelian variety A/K. Then, from the knowledge of a theta null point of A/K, we present an algorithm to obtain a rational expression for an isogeny from A to A/K. The algorithm that results from combining these two steps can be viewed as a higher-dimensional analog of the well-known algorithm of Vélu for computing isogenies between elliptic curves. In the case where K is isomorphic to (ℤ/ℓℤ)g for ℓ∈ℕ*, the overall time complexity of this algorithm is equivalent to O(log ℓ) additions in A and a constant number of ℓth root extractions in the base field of A. In order to improve the efficiency of our algorithms, we introduce a compressed representation that allows us to encode a point of level 4ℓ of a g-dimensional abelian variety using only g(g+1)/2⋅4g coordinates. We also give formulas for computing the Weil and commutator pairings given input points in theta coordinates.

2018 ◽  
Vol 154 (5) ◽  
pp. 934-959 ◽  
Author(s):  
Bruce W. Jordan ◽  
Allan G. Keeton ◽  
Bjorn Poonen ◽  
Eric M. Rains ◽  
Nicholas Shepherd-Barron ◽  
...  

Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.


1978 ◽  
Vol 69 ◽  
pp. 65-96 ◽  
Author(s):  
Horacio Tapia-Recillas

Let k be a field complete with respect to a non-trivial, non-archimedean valuation and let g be a positive integer. Consider the following question : if Γ is a multiplicative subgroup of Gg = (k*)g satisfying certain “Riemann conditions”, can one construct in a natural way an abelian variety defined over k having Gg/Γ as its set of k-rational points? This problem was first considered by Morikawa [3]. J. Tate provided a complete solution for g = 1 (cf. for example [6]). J. McCabe [2] gave a partial solution for g > 1. He showed how to attach to Γ a graded ring R of theta functions such that A = Proj. R is g-dimensional abelian variety over k.


2011 ◽  
Vol 07 (01) ◽  
pp. 173-202
Author(s):  
ROBERT CARLS

In this article, we give a Galois-theoretic characterization of the canonical theta structure. The Galois property of the canonical theta structure translates into certain p-adic theta relations which are satisfied by the canonical theta null point of the canonical lift. As an application, we prove some 2-adic theta identities which describe the set of canonical theta null points of the canonical lifts of ordinary abelian varieties in characteristic 2. The latter theta relations are suitable for explicit canonical lifting. Using the theory of canonical theta null points, we are able to give a theoretical foundation to Mestre's point counting algorithm which is based on the computation of the generalized arithmetic geometric mean sequence.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2016 ◽  
Vol 102 (3) ◽  
pp. 316-330 ◽  
Author(s):  
MAJID HADIAN ◽  
MATTHEW WEIDNER

In this paper we study the variation of the $p$-Selmer rank parities of $p$-twists of a principally polarized Abelian variety over an arbitrary number field $K$ and show, under certain assumptions, that this parity is periodic with an explicit period. Our result applies in particular to principally polarized Abelian varieties with full $K$-rational $p$-torsion subgroup, arbitrary elliptic curves, and Jacobians of hyperelliptic curves. Assuming the Shafarevich–Tate conjecture, our result allows one to classify the rank parities of all quadratic twists of an elliptic or hyperelliptic curve after a finite calculation.


1962 ◽  
Vol 20 ◽  
pp. 1-27 ◽  
Author(s):  
Hisasi Morikawa

We shall denote by the Z-module of integral vectors of dimension r, by T a symmetric complex matrix with positive definite imaginary part and by g the variable vector. If we put and the fundamental theta function is expressed in the form: as a series in q and u. Other theta functions in the classical theory are derived from the fundamental theta function by translating the origin and making sums and products, so these theta functions are also expressed in the form: as series of q and u. Moreover the coefficients in the relations of theta functions are also expressed in the form: as series in q.


Author(s):  
Shinobu Hosono ◽  
Bong H Lian ◽  
Shing-Tung Yau

Abstract We continue our study on the hypergeometric system $E(3,6)$ that describes period integrals of the double cover family of K3 surfaces. Near certain special boundary points in the moduli space of the K3 surfaces, we construct the local solutions and determine the so-called mirror maps expressing them in terms of genus 2 theta functions. These mirror maps are the K3 analogues of the elliptic $\lambda $-function. We find that there are two nonisomorphic definitions of the lambda functions corresponding to a flip in the moduli space. We also discuss mirror symmetry for the double cover K3 surfaces and their higher dimensional generalizations. A follow-up paper will describe more details of the latter.


2018 ◽  
Vol 19 (3) ◽  
pp. 891-918 ◽  
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.


2015 ◽  
Vol 18 (1) ◽  
pp. 198-216 ◽  
Author(s):  
David Lubicz ◽  
Damien Robert

AbstractLet $A$ be an abelian variety of dimension $g$ together with a principal polarization ${\it\phi}:A\rightarrow \hat{A}$ defined over a field $k$. Let $\ell$ be an odd integer prime to the characteristic of $k$ and let $K$ be a subgroup of $A[\ell ]$ which is maximal isotropic for the Riemann form associated to ${\it\phi}$. We suppose that $K$ is defined over $k$ and let $B=A/K$ be the quotient abelian variety together with a polarization compatible with ${\it\phi}$. Then $B$, as a polarized abelian variety, and the isogeny $f:A\rightarrow B$ are also defined over $k$. In this paper, we describe an algorithm that takes as input a theta null point of $A$ and a polynomial system defining $K$ and outputs a theta null point of $B$ as well as formulas for the isogeny $f$. We obtain a complexity of $\tilde{O} (\ell ^{(rg)/2})$ operations in $k$ where $r=2$ (respectively, $r=4$) if $\ell$ is a sum of two (respectively, four) squares which constitutes an improvement over the algorithm described in Cosset and Robert (Math. Comput. (2013) accepted for publication). We note that the algorithm is quasi-optimal if $\ell$ is a sum of two squares since its complexity is quasi-linear in the degree of $f$.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Cristian Anghel ◽  
Nicolae Buruiana

We give a new proof for a theorem of Ziv Ran which generalizes some results of Matsusaka and Hoyt. These results provide criteria for an Abelian variety to be a Jacobian or a product of Jacobians. The advantage of our method is that it works in arbitrary characteristic.


Sign in / Sign up

Export Citation Format

Share Document