scholarly journals Asymptotic representations and Drinfeld rational fractions

2012 ◽  
Vol 148 (5) ◽  
pp. 1593-1623 ◽  
Author(s):  
David Hernandez ◽  
Michio Jimbo

AbstractWe introduce and study a category of representations of the Borel algebra associated with a quantum loop algebra of non-twisted type. We construct fundamental representations for this category as a limit of the Kirillov–Reshetikhin modules over the quantum loop algebra and establish explicit formulas for their characters. We prove that general simple modules in this category are classified by n-tuples of rational functions in one variable which are regular and non-zero at the origin but may have a zero or a pole at infinity.

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Peter Korn

AbstractWe consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equations”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean primitive equations with nonlinear thermodynamics in the Sobolev space $${{\mathcal {H}}^{1}}$$ H 1 . The proof rests upon the fundamental work of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753, 2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean and climate science.


2021 ◽  
Vol 58 (1) ◽  
pp. 68-82
Author(s):  
Jean-Renaud Pycke

AbstractWe give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.


Sign in / Sign up

Export Citation Format

Share Document