scholarly journals Higher symmetries of powers of the Laplacian and rings of differential operators

2017 ◽  
Vol 153 (4) ◽  
pp. 678-716 ◽  
Author(s):  
T. Levasseur ◽  
J. T. Stafford

We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries$\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$. The connection is made through the construction of a highest-weight representation of $\mathfrak{g}$ via the ring of differential operators ${\mathcal{D}}(X)$ on the singular scheme $X=(\mathtt{F}^{r}=0)\subset \mathbb{C}^{n}$, for $\mathtt{F}=\sum _{j=1}^{n}X_{i}^{2}\in \mathbb{C}[X_{1},\ldots ,X_{n}]$. In particular, we prove that $U(\mathfrak{g})/K_{r}\cong \mathscr{S}(\Box ^{r})\cong {\mathcal{D}}(X)$ for a certain primitive ideal $K_{r}$. Interestingly, if (and only if) $n$ is even with $r\geqslant n/2$, then both $\mathscr{S}(\Box ^{r})$ and its natural module ${\mathcal{A}}=\mathbb{C}[\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n},\ldots ,\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n}]/(\Box ^{r})$ have a finite-dimensional factor. The same holds for the ${\mathcal{D}}(X)$-module ${\mathcal{O}}(X)$. We also study higher-dimensional analogues $M_{r}=\{x\in A:\Box ^{r}(x)=0\}$ of the module of harmonic elements in $A=\mathbb{C}[X_{1},\ldots ,X_{n}]$ and of the space of ‘harmonic densities’. In both cases we obtain a minimal $\mathfrak{g}$-representation that is closely related to the $\mathfrak{g}$-modules ${\mathcal{O}}(X)$ and ${\mathcal{A}}$. Essentially all these results have real analogues, with the Laplacian replaced by the d’Alembertian $\Box _{p}$ on the pseudo-Euclidean space $\mathbb{R}^{p,q}$ and with $\mathfrak{g}$ replaced by the real Lie algebra $\mathfrak{so}(p+1,q+1)$.

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
A. Morozov ◽  
M. Reva ◽  
N. Tselousov ◽  
Y. Zenkevich

AbstractWe describe a systematic method to construct arbitrary highest-weight modules, including arbitrary finite-dimensional representations, for any finite dimensional simple Lie algebra $${\mathfrak {g}}$$ g . The Lie algebra generators are represented as first order differential operators in $$\frac{1}{2} \left( \dim {\mathfrak {g}} - \text {rank} \, {\mathfrak {g}}\right) $$ 1 2 dim g - rank g variables. All rising generators $$\mathbf{e}$$ e are universal in the sense that they do not depend on representation, the weights enter (in a very simple way) only in the expressions for the lowering operators $$\mathbf{f}$$ f . We present explicit formulas of this kind for the simple root generators of all classical Lie algebras.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].


1998 ◽  
Vol 41 (3) ◽  
pp. 611-623
Author(s):  
R. J. Marsh

Let U be the quantized enveloping algebra associated to a simple Lie algebra g by Drinfel'd and Jimbo. Let λ be a classical fundamental weight for g, and ⋯(λ) the irreducible, finite-dimensional type 1 highest weight U-module with highest weight λ. We show that the canonical basis for ⋯(λ) (see Kashiwara [6, §0] and Lusztig [18, 14.4.12]) and the standard monomial basis (see [11, §§2.4 and 2.5]) for ⋯(λ) coincide.


1994 ◽  
Vol 37 (1) ◽  
pp. 143-160 ◽  
Author(s):  
A. G. Jones

Let be a finite dimensional toric variety over an algebraically closed field of characteristic zero, k. Let be the sheaf of differential operators on . We show that the ring of global sections, is a finitely generated Noetherian k-algebra and that its generators can be explicitly found. We prove a similar result for the sheaf of differential operators with coefficients in a line bundle.


2009 ◽  
Vol 52 (1) ◽  
pp. 19-32 ◽  
Author(s):  
JOHAN KÅHRSTRÖM

AbstractLet be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I ⊆ S let I be the corresponding semi-simple subalgebra of . Denote by WI the Weyl group of I and let w○ and wI○ be the longest elements of W and WI, respectively. In this paper we show that the answer to Kostant's problem, i.e. whether the universal enveloping algebra surjects onto the space of all ad-finite linear transformations of a given module, is the same for the simple highest weight I-module LI(x) of highest weight x ⋅ 0, x ∈ WI, as the answer for the simple highest weight -module L(xwI○w○) of highest weight xwI○w○ ⋅ 0. We also give a new description of the unique quasi-simple quotient of the Verma module Δ(e) with the same annihilator as L(y), y ∈ W.


Sign in / Sign up

Export Citation Format

Share Document